[1] BEVIS M, BUSINGER S, HERRING T A, et al.GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J].Journal of Geophysical Research Atmospheres, 1992, 97(14):15787-15793. [2] HOOGENDOORN S P, VAN ZUYLEN H J, SCHREUDER M, et al.Microscopic traffic data collection by remote sensing[J].Transportation Research Record:Journal of the Transportation Research Board, 2003, 1855(1):121-128. [3] WARD M H, NUCKOLS J R, WEIGEL S J, et al.Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system[J].Environmental Health Perspectives, 2000, 108(1):5-12. [4] YU Z D, FENG C, LIU M Y, et al.CASENet:deep category-aware semantic edge detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1761-1770. [5] 张颖, 马承泽, 杨平, 等.基于小波变换和改进PCA的人脸特征提取算法[J].吉林大学学报(理学版), 2021, 59(6):1499-1503. ZHANG Y, MA C Z, YANG P, et al.Face feature extraction algorithim based on wavelet transform and improved principal component analysis[J].Journal of Jilin University(Science Edition), 2021, 59(6):1499-1503.(in Chinese) [6] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651. [7] FUKUSHIMA K.Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J].Biological Cybernetics, 1980, 36(4):193-202. [8] FENG J, JIAO L C, SUN T, et al.Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6516-6530. [9] FANG L Y, LI S T, DUAN W H, et al.Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6663-6674. [10] ZHANG X R, GAO Z Y, JIAO L C, et al.Multi feature hyperspectral image classification with local and nonlocal spatial information via Markov random field in semantic space[J].IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3):1409-1424. [11] ZENG D, CHEN S J, CHEN B Y, et al.Improving remote sensing scene classification by integrating global-context and local-object features[J].Remote Sensing, 2018, 10(5):734-743. [12] ZHAO W Z, DU S H, EMERY W J.Object-based convolutional neural network for high-resolution imagery classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7):3386-3396. [13] WANG Q, GAO J Y, LI X L.Weakly supervised adversarial domain adaptation for semantic segmentation in urban scenes[J].IEEE Transactions on Image Processing, 2019, 28(9):4376-4386. [14] LI H C, XIONG P F, FAN H Q, et al.DFANet:deep feature aggregation for real-time semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:9514-9523. [15] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network-supplymentary material[EB/OL].[2021-07-10].https://www.semanticscholar.org/paper/Pyramid-Scene-Parsing-Network-%E2%80%94-Supplymentary-Zhao-Shi/7c0e228f216cb6af7019681aeb1646279b09f10a. [16] RONNEBERGER O, FISCHER P, BROX T.U-net:convolutional networks for biomedical image segmentation[M] Berlin, Germany:Springer International Publishing, 2015:234-241. [17] 王斌, 陈占龙, 吴亮, 等.兼顾连通性的U-Net网络高分辨率遥感影像道路提取[J].遥感学报, 2020, 24(12):1488-1499. WANG B, CHEN Z L, WU L, et al.Road extraction of high-resolution satellite remote sensing images in U-Net network with consideration of connectivity[J].Journal of Remote Sensing, 2020, 24(12):1488-1499.(in Chinese) [18] WANG P Q, CHEN P F, YUAN Y, et al.Understanding convolution for semantic segmentation[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision.Washington D.C., USA.IEEE Press, 2018:1451-1460. [19] CHEN L C, PAPANDREOU G, SCHROFF F, et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2021-07-10].https://arxiv.org/abs/1706.05587. [20] ZHOU L C, ZHANG C, WU M.D-LinkNet:LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2018:192-1924. [21] ZHAO W Z, DU S H.Learning multiscale and deep representations for classifying remotely sensed imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113:155-165. [22] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of ECCV Conference on Computer Vision.Germany:Springer, 2018:833-851. [23] 方军, 李朝奎, 吴馁, 等.基于改进全卷积网络的高分辨率遥感影像农村道路提取方法[J].遥感学报, 2021, 25(9):1978-1988 FANG J, LI C K, WU N, et al.Method for extracting rural roads from high-resolution remote sensing images based on improved full convolutional network[J].Journal of Remote Sensing, 2021, 25(9):1978-1988 [24] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [25] ZHAO M H, ZHONG S S, FU X Y, et al.Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics, 2020, 16(7):4681-4690. [26] ZHANG Z X, LIU Q J, WANG Y H.Road extraction by deep residual U-net[J].IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749-753. [27] CHENG G L, WANG Y, XU S B, et al.Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3322-3337. [28] LU X Y, ZHONG Y F, ZHENG Z, et al.Multi-scale and multi-task deep learning framework for automatic road extraction[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9362-9377. [29] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al.A survey on deep learning techniques for image and video semantic segmentation[J].Applied Soft Computing, 2018, 70:41-65. |