1 |
HAO Y T. Research on multi-feature and machine learning hierarchical pedestrian detection method based on deep learning. Journal of Physics: Conference Series, 2021, 1748(2): 022001.
doi: 10.1088/1742-6596/1748/2/022001
|
2 |
DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2844-2853.
|
3 |
黄凤琪, 陈明, 冯国富. 基于可变形卷积的改进YOLO目标检测算法. 计算机工程, 2021, 47(10): 269-275, 282
URL
|
|
HUANG F Q, CHEN M, FENG G F. Improved YOLO object detection algorithm based on deformable convolution. Computer Engineering, 2021, 47(10): 269-275, 282
URL
|
4 |
宋志娜, 眭海刚, 李永成. 高分辨率可见光遥感图像舰船目标检测综述. 武汉大学学报(信息科学版), 2021, 46(11): 1703- 1715.
URL
|
|
SONG Z N, SUI H G, LI Y C. A survey on ship detection technology in high-resolution optical remote sensing images. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703- 1715.
URL
|
5 |
尹雅, 黄海, 张志祥. 基于光学遥感图像的舰船目标检测技术研究. 计算机科学, 2019, 463)(3): 82- 87.
URL
|
|
YIN Y, HUANG H, ZHANG Z X. Research on ship detection technology based on optical remote sensing image. Computer Science, 2019, 463)(3): 82- 87.
URL
|
6 |
刘俊, 姜涛, 徐小康, 等. 基于轻量化深度网络的舰船目标识别技术研究. 无线电工程, 2019, 49(12): 1025- 1030.
URL
|
|
LIU J, JIANG T, XU X K, et al. Research on ship target recognition technology based on lightweight deep network. Radio Engineering, 2019, 49(12): 1025- 1030.
URL
|
7 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
9 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
11 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
12 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//LEIBE B, JIRI MATAS J, SEBE N, et al. Computer vision-ECCV 2016. Berlin, Germany: Springer international publisher, 2016: 21-37.
|
13 |
YANG X, YAN J C, FENG Z M, et al. R3Det: refined single-stage detector with feature refinement for rotating object. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3163- 3171.
doi: 10.1609/aaai.v35i4.16426
|
14 |
WU Y F, ZHAO W, ZHANG R F, et al. AMR-net: arbitrary-oriented ship detection using attention module, multi-scale feature fusion and rotation pseudo-label. IEEE Access, 2021, 9, 68208- 68222.
doi: 10.1109/ACCESS.2021.3075857
|
15 |
周旗开, 张伟, 李东锦, 等. 基于改进YOLOv5s的光学遥感图像舰船分类检测方法. 激光与光电子学进展, 2022, 59(16): 466- 473.
URL
|
|
ZHOU Q K, ZHANG W, LI D J, et al. Ship classification and detection method for optical remote sensing images based on improved YOLOv5s. Laser & Optoelectronics Progress, 2022, 59(16): 466- 473.
URL
|
16 |
LIU Z K, WANG H Z, WENG L B, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1074- 1078.
|
17 |
LIU Z K, HU J G, WENG L B, et al. Rotated region based CNN for ship detection[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2018: 900-904.
|
18 |
XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3974-3983.
|
19 |
LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto, Portugal: [s. n. ], 2017: 324-331.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
22 |
PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 821-830.
|
23 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3141-3149.
|
24 |
MING Q, ZHOU Z Q, MIAO L J, et al. Dynamic anchor learning for arbitrary-oriented object detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2355- 2363.
|
25 |
|
26 |
MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia, 2018, 20(11): 3111- 3122.
|