1 |
王安志, 任春洪, 何淋艳, 等. 基于多模态多级特征聚合网络的光场显著性目标检测. 计算机工程, 2022, 48(7): 227-233, 240
doi: 10.19678/j.issn.1000-3428.0061811
|
|
WANG A Z, REN C H, HE L Y, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network. Computer Engineering, 2022, 48(7): 227-233, 240
doi: 10.19678/j.issn.1000-3428.0061811
|
2 |
WANNER S, GOLDLUECKE B. Variational light field analysis for disparity estimation and super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 606- 619.
doi: 10.1109/TPAMI.2013.147
|
3 |
CHEN J, HOU J H, NI Y, et al. Accurate light field depth estimation with superpixel regularization over partially occluded regions. IEEE Transactions on Image Processing, 2018, 27(10): 4889- 4900.
doi: 10.1109/TIP.2018.2839524
|
4 |
KIM C, ZIMMER H, PRITCH Y, et al. Scene reconstruction from high spatio-angular resolution light fields. ACM Transactions on Graphics, 2013, 32(4): 1- 12.
|
5 |
FISS J, CURLESS B, SZELISKI R. Refocusing plenoptic images using depth-adaptive splatting[C]//Proceedings of International Conference on Computational Photography. Washington D. C., USA: IEEE Press, 2014: 1-9.
|
6 |
PAUDYAL P, BATTISTI F, SJÖSTRÖM M, et al. Towards the perceptual quality evaluation of compressed light field images. IEEE Transactions on Broadcasting, 2017, 63(3): 507- 522.
doi: 10.1109/TBC.2017.2704430
|
7 |
刘海, 杨环, 潘振宽, 等. 基于生成感知差异的无参考图像质量评价模型. 计算机工程, 2021, 47(5): 205- 212.
doi: 10.19678/j.issn.1000-3428.0057740
|
|
LIU H, YANG H, PAN Z K, et al. No-reference image quality assessment model based on generated perceptual difference. Computer Engineering, 2021, 47(5): 205- 212.
doi: 10.19678/j.issn.1000-3428.0057740
|
8 |
LIN W S, KUO C C J. Perceptual visual quality metrics: a survey. Journal of Visual Communication and Image Representation, 2011, 22(4): 297- 312.
doi: 10.1016/j.jvcir.2011.01.005
|
9 |
谢瑞, 邵堃, 霍星, 等. 一种改进的DIQaMFR/NR图像质量评价模型. 计算机工程, 2020, 46(8): 258-263, 270
URL
|
|
XIE R, SHAO K, HUO X, et al. An improved DIQaMFR/NR image quality assessment model. Computer Engineering, 2020, 46(8): 258-263, 270
URL
|
10 |
SHI L K, ZHAO S Y, ZHOU W, et al. Perceptual evaluation of light field image[C]//Proceedings of the 25th International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2018: 41-45.
|
11 |
WU G C, MASIA B, JARABO A, et al. Light field image processing: an overview. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 926- 954.
doi: 10.1109/JSTSP.2017.2747126
|
12 |
XIANG J J, JIANG G Y, YU M, et al. No-reference light field image quality assessment based on depth, structural and angular information. Signal Processing, 2021, 184, 108063.
doi: 10.1016/j.sigpro.2021.108063
|
13 |
ALVES G, PEREIRA M P, DE CARVALHO M B, et al. A study on the 4D sparsity of JPEG pleno light fields using the discrete cosine transform[C]//Proceedings of the 25th International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2018: 1148-1152.
|
14 |
SHI L K, ZHAO S Y, CHEN Z B. Belif: blind quality evaluator of light field image with tensor structure variation index[C]//Proceedings of International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2019: 3781-3785.
|
15 |
ZHOU W, SHI L K, CHEN Z B, et al. Tensor oriented no-reference light field image quality assessment. IEEE Transactions on Image Processing, 2020, 29, 4070- 4084.
doi: 10.1109/TIP.2020.2969777
|
16 |
XIANG J J, YU M, CHEN H, et al. VBLFI: visualization-based blind light field image quality assessment[C]//Proceedings of International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
17 |
XIANG J J, YU M, JIANG G Y, et al. Pseudo video and refocused images-based blind light field image quality assessment. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(7): 2575- 2590.
doi: 10.1109/TCSVT.2020.3030049
|
18 |
IHRKE I, RESTREPO J, MIGNARD-DEBISE L. Principles of light field imaging: briefly revisiting 25 years of research. IEEE Signal Processing Magazine, 2016, 33(5): 59- 69.
doi: 10.1109/MSP.2016.2582220
|
19 |
史丽坤. 光场图像质量评价研究[D]. 合肥: 中国科学技术大学, 2019.
|
|
SHI L K. Evaluation of light field image quality[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
|
20 |
TIAN Y, ZENG H Q, XING L, et al. A multi-order derivative feature-based quality assessment model for light field image. Journal of Visual Communication and Image Representation, 2018, 57, 212- 217.
doi: 10.1016/j.jvcir.2018.11.005
|
21 |
MIN X K, ZHOU J T, ZHAI G T, et al. A metric for light field reconstruction, compression, and display quality evaluation. IEEE Transactions on Image Processing, 2020, 29, 3790- 3804.
doi: 10.1109/TIP.2020.2966081
|
22 |
PAUDYAL P, BATTISTI F, CARLI M. Reduced reference quality assessment of light field images. IEEE Transactions on Broadcasting, 2019, 65(1): 152- 165.
doi: 10.1109/TBC.2019.2892092
|
23 |
SHI L K, ZHOU W, CHEN Z B, et al. No-reference light field image quality assessment based on spatial-angular measurement. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 4114- 4128.
doi: 10.1109/TCSVT.2019.2955011
|
24 |
史婷婷, 刘卫华, 伍春晖. 一种新的图像空间特征提取方法. 计算机工程, 2012, 38(3): 218- 220.
doi: 10.3969/j.issn.1000-3428.2012.03.073
|
|
SHI T T, LIU W H, WU C H. Novel approach for image spatial feature extraction. Computer Engineering, 2012, 38(3): 218- 220.
doi: 10.3969/j.issn.1000-3428.2012.03.073
|
25 |
DONG W, BIE H X, LU L K, et al. Image quality assessment by considering multiscale and multidirectional visibility differences in shearlet domain. IEEE Access, 2019, 7, 78715- 78728.
doi: 10.1109/ACCESS.2019.2922011
|
26 |
LIN Y H, WU J L. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Transactions on Image Processing, 2014, 23(4): 1527- 1542.
doi: 10.1109/TIP.2014.2302686
|
27 |
PEI S C, CHEN L H. Image quality assessment using human visual DoG model fused with random forest. IEEE Transactions on Image Processing, 2015, 24(11): 3282- 3292.
doi: 10.1109/TIP.2015.2440172
|
28 |
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971- 987.
doi: 10.1109/TPAMI.2002.1017623
|
29 |
LI Q H, LIN W S, FANG Y M. No-reference quality assessment for multiply-distorted images in gradient domain. IEEE Signal Processing Letters, 2016, 23(4): 541- 545.
doi: 10.1109/LSP.2016.2537321
|
30 |
YUE G H, HOU C P, GU K, et al. Biologically inspired blind quality assessment of tone-mapped images. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2525- 2536.
|
31 |
LUO Z Y, ZHOU W, SHI L K, et al. No-reference light field image quality assessment based on micro-lens image[C]//Proceedings of Conference on Picture Coding Symposium. Washington D. C., USA: IEEE Press, 2019: 1-5.
|
32 |
OJANSIVU V, HEIKKILÄ J. Blur insensitive texture classification using local phase quantization[C]//Proceedings of International Conference on Image and Signal Processing. Berlin, Germany: Springer, 2008: 236-243.
|
33 |
马允, 王晓东, 富显祖, 等. 基于GA-SVR模型的无参考立体图像质量评价. 计算机工程, 2017, 43(5): 234-239, 247
URL
|
|
MA Y, WANG X D, FU X Z, et al. No-reference stereoscopic image quality assessment based on GA-SVR model. Computer Engineering, 2017, 43(5): 234-239, 247
URL
|
34 |
李翔. 基于SVM和PSO的图像质量评价. 计算机工程, 2012, 38(23): 215- 218.
URL
|
|
LI X. Image quality assessment based on support vector machine and particle swarm optimization. Computer Engineering, 2012, 38(23): 215- 218.
URL
|
35 |
CHANG C C, LIN C J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1- 27.
|
36 |
HUANG Z J, YU M, JIANG G Y, et al. Reconstruction distortion oriented light field image dataset for visual communication[C]//Proceedings of International Symposium on Networks, Computers and Communications. Washington D. C., USA: IEEE Press, 2019: 1-5.
|
37 |
RERABEK M, EBRAHIMI T. New light field image dataset[C]//Proceedings of the 8th International Conference on Quality of Multimedia Experience. Lisbon, Portugal: [s. n. ], 2016: 1-10.
|
38 |
HONAUER K, JOHANNSEN O, KONDERMANN D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]//Proceedings of Asian Conference on Computer Vision. Berlin, Germany: Springer, 2017: 19-34.
|
39 |
ZHANG S, SHENG H, YANG D, et al. Micro-lens based matching for scene recovery in lenslet cameras. IEEE Transactions on Image Processing, 2018, 27(3): 1060- 1075.
doi: 10.1109/TIP.2017.2763823
|
40 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600- 612.
URL
|
41 |
ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378- 2386.
URL
|
42 |
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12): 4695- 4708.
URL
|
43 |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209- 212.
URL
|
44 |
LI X L, GUO Q, LU X Q. Spatiotemporal statistics for video quality assessment. IEEE Transactions on Image Processing, 2016, 25(7): 3329- 3342.
|
45 |
马小雨, 姜秀华. 基于机器学习的全参考图像质量评价模型泛化能力分析. 中国传媒大学学报(自然科学版), 2019, 26(4): 42- 49.
URL
|
|
MA X Y, JIANG X H. Analysis for the generalization ability of machine learning based full reference image quality metrics. Journal of Communication University of China (Science and Technology), 2019, 26(4): 42- 49.
URL
|