1 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
2 |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
3 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
4 |
H N S, H N L, H N P, et al. Detection and localization of mask occluded faces by transfer learning using faster RCNN. SSRN Electronic Journal, 2021, 45(6): 3320- 3335.
|
5 |
徐东东. 基于深度学习的人脸口罩检测与识别[D]. 无锡: 江南大学, 2022.
|
|
XU D D. Face mask detection and recognition based on deep learning[D]. Wuxi: Jiangnan University, 2022. (in Chinese)
|
6 |
万子伦. 基于改进Faster-RCNN的多尺度人脸口罩检测算法研究[D]. 开封: 河南大学, 2022.
|
|
WAN Z L. Research on multi-scale face mask detection algorithm based on improved Faster-RCNN[D]. Kaifeng: Henan University, 2022. (in Chinese)
|
7 |
王克丽, 景运革. 基于YOLO的人脸口罩检测. 运城学院学报, 2022, 40(3): 60- 64.
URL
|
|
WANG K L, JING Y G. Face mask detection based on YOLO. Journal of Yuncheng University, 2022, 40(3): 60- 64.
URL
|
8 |
薄景文, 张春堂. 基于YOLOv3的轻量化口罩佩戴检测算法. 电子测量技术, 2021, 44(23): 105- 110.
URL
|
|
BO J W, ZHANG C T. Lightweight mask wearing detection algorithm based on YOLOv3. Electronic Measurement Technology, 2021, 44(23): 105- 110.
URL
|
9 |
叶茂, 马杰, 王倩, 等. 多尺度特征融合的轻量化口罩佩戴检测算法. 计算机工程, 2022, 48(7): 42- 50.
URL
|
|
YE M, MA J, WANG Q, et al. Lightweight mask-wearing detection algorithm with multi-scale feature fusion. Computer Engineering, 2022, 48(7): 42- 50.
URL
|
10 |
程长文, 陈玮, 陈劲宏, 等. 改进YOLO的口罩佩戴实时检测方法. 电子科技, 2023, 36(2): 73- 80.
URL
|
|
CHENG C W, CHEN W, CHEN J H, et al. YOLO-improve detection method of real-time mask wearing. Electronic Science and Technology, 2023, 36(2): 73- 80.
URL
|
11 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
12 |
|
13 |
|
14 |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2778-2788.
|
15 |
WANG C Y, LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1571-1580.
|
16 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
17 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
19 |
HU J Y, LIU B J, PENG S H. Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques. Stochastic Environmental Research and Risk Assessment, 2019, 33(4/5/6): 1117- 1135.
|
20 |
|
21 |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2022-08-01]. https://arxiv.org/abs/2206.02424.
|
22 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2022-08-01]. https://arxiv.org/abs/1602.07360.
|
23 |
WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware Reassembly of FEatures[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 3007-3016.
|
24 |
|
25 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[M]. Berlin, Germany: Springer, 2014: 740-755.
|
26 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
27 |
|