[1] KUMAR A.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics, 2008, 55(1):348-363. [2] DING S M, LIU Z F, LI C L.AdaBoost learning for fabric defect detection based on HOG and SVM[C]//Proceedings of International Conference on Multimedia Technology.Washington D.C., USA:IEEE Press, 2011:2903-2906. [3] HANBAY K, TALU M F, ÖZGÜVEN Ö F.Fabric defect detection systems and methods-a systematic literature review[J].Optik, 2016, 127(24):11960-11973. [4] MIRMAHDAVI S A, AHMADYFARD A, SHAHRAKI A A, et al.A novel modeling of random textures using Fourier transform for defect detection[C]//Proceedings of the 15th International Conference on Computer Modelling and Simulation.Washington D.C., USA:IEEE Press, 2013:470-475. [5] 任欢欢, 景军锋, 张缓缓, 等.应用GIS和FTDT的织物错花缺陷检测研究[J].激光与光电子学进展, 2019, 56(13):94-99. REN H H, JING J F, ZHANG H H, et al.Cross-printing defect detection of printed fabric using GIS and FTDT[J].Laser &Optoelectronics Progress, 2019, 56(13):94-99.(in Chinese) [6] LIU L L, ZHANG H J, XU X F, et al.Collocating clothes with generative adversarial networks cosupervised by categories and attributes:a multidiscriminator framework[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3540-3554. [7] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Conditional generative adversarial nets[J].Communications of the ACM, 2020, 63(11):139-144. [8] ZHAO M B, LIU Y, LI X R, et al.An end-to-end framework for clothing collocation based on semantic feature fusion[J].IEEE MultiMedia, 2020, 27(4):122-132. [9] SCHUSTER M, PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [10] ZHANG H J, WANG X H, LIU L L, et al.WarpClothingOut:a stepwise framework for clothes translation from the human body to tiled images[J].IEEE MultiMedia, 2020, 27(4):58-68. [11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of Advances in Neural Information Processing Systems.New York, USA:ACM Press, 2014:2672-2680. [12] 许玉格, 钟铭, 吴宗泽, 等.基于深度学习的纹理布匹瑕疵检测方法[J].自动化学报, 2020, 45(7):1-15. XU Y G, ZHONG M, WU Z Z, et al.Detection of detecting textured fabric defects based on deep learning.[J].Acta Automatica Sinica, 2020, 45(7):1-15.(in Chinese) [13] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-11-03].https://arxiv.org/abs/2004.10934. [15] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4510-4520. [16] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA.IEEE Press, 2021:13708-13717. [17] LIU S T, HUANG D, WANG Y H.Learning spatial fusion for single-shot object detection[EB/OL].[2021-11-03].https://arxiv.org/abs/1911.09516. [18] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [19] ARTHUR D, VASSILVITSKII S.K-means++:the advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.New York, USA:ACM Press, 2007:1027-1035. [20] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [21] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [22] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [23] 吴涛, 王伟斌, 于力, 等.轻量级YOLOV3的绝缘子缺陷检测方法[J].计算机工程, 2019, 45(8):275-280. WU T, WANG W B, YU L, et al.Insulator defect detection method for lightweight YOLOV3[J].Computer Engineering, 2019, 45(8):275-280.(in Chinese) [24] WANG C Y, MARK LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:1571-1580. [25] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [26] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [27] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [28] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. |