[1] SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269. [2] TENENBAUM J B,SILVA V D,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2322. [3] ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. [4] COX M A A,COX T F.Multidimensional scaling[M] Berlin,German:Springer,2008. [5] BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396. [6] DONOHO D L,GRIMES C.Hessian eigenmaps:locally linear embedding techniques for high-dimensional data[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(10):5591-5596. [7] ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. [8] WANG R P,SHAN S G,CHEN X L,et al.Manifold-manifold distance with application to face recognition based on image set[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8. [9] SOUVENIR R,PLESS R.Manifold clustering[C]//Proceedings of the 20th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2005:648-653. [10] MAATEN L D,HINTON D.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605. [11] MCINNES L,HEALY J,SAUL N,et al.UMAP:uniform manifold approximation and projection[J].Journal of Open Source Software,2018,3(29):861. [12] WANG Y,JIANG Y,WU Y,et al.Multi-manifold clustering[C]//Proceedings of International Conference on Artificial Intelligence.Berlin,German:Springer,2010:280-291. [13] WANG Y,JIANG Y A,WU Y,et al.Spectral clustering on multiple manifolds[J].IEEE Transactions on Neural Networks,2011,22(7):1149-1161. [14] ZHENG W,CHEN S.Multiple manifolds clustering via local linear analysis[J].Cybernetics and Information Technologies,2016,16(6):194-206. [15] CHENG D D,ZHANG S L,HUANG J L.Dense members of local cores-based density peaks clustering algorithm[J].Knowledge-Based Systems,2020,193:105454. [16] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496. [17] TIPPING M E,BISHOP C M.Mixtures of probabilistic principal component analyzers[J].Neural Computation,1999,11(2):443-482. [18] 高小方,刘杰飞,梁吉业.一种面向高维相交多流形的识别算法D-MPPCA[J].小型微型计算机系统,2018,39(7):1431-1435.GAO X F,LIU J F,LIANG J Y.Recognition algorithm D-MPPCA for high dimensional intersected multi-manifolds[J].Journal of Chinese Computer Systems,2018,39(7):1431-1435.(in Chinese) [19] GONG C,SHI H,YANG J,et al.Multi-manifold positive and unlabeled learning for visual analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,30(5):1396-1409. [20] GAO X F,LIANG J Y,WANG W J,et al.An unsupervised multi-manifold discriminant isomap algorithm based on the pairwise constraints[J].International Journal of Machine Learning and Cybernetics,2022,13(5):1317-1336. [21] ERY A C,GILAD L,TENG Z.Spectral clustering based on local PCA[J].Journal of Machine Learning Research,2017,18:1-57. [22] GENG X,ZHAN D C,ZHOU Z H.Supervised nonlinear dimensionality reduction for visualization and classification[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),2005,35(6):1098-1107. [23] HE S,SORAGHAN J J,O'REILLY B F.Supervised Local Linear Embedding(SLLE) for facial paralysis image sequence analysis[C]//Proceedings of IEEE International Conference on Multimedia and Expo.Washington D.C.,USA:IEEE Press,2008:49-52. [24] GOLDBERG A B,ZHU X J,SINGH A,et al.Multi-manifold semi-supervised learning[J].Journal of Machine Learning Research,2009,5:169-176. [25] XING X L,YU Y,JIANG H,et al.A multi-manifold semi-supervised Gaussian mixture model for pattern classification[J].Pattern Recognition Letters,2013,34(16):2118-2125. [26] ZHU X J,GHAHRAMANI Z.Learning from labeled and unlabeled data with label propagation[EB/OL].[2022-04-30].https://www.cnblogs.com/MTandHJ/p/16343806.html. [27] SUN D,ZHANG D Q.Bagging constraint score for feature selection with pairwise constraints[J].Pattern Recognition,2010,43(6):2106-2118. [28] BAGHSHAH M S,SHOURAKI S B.Semi-supervised metric learning using pairwise constraints[C]//Proceedings of the 21st International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2009:1217-1222. [29] JIA Y,WU W,WANG R,et al.Joint optimization for pairwise constraint propagation[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(7):3168-3180. [30] VON LUXBURG U.A tutorial on spectral clustering[J].Statistics and Computing,2007,17(4):395-416. |