[1] CHEN Y H, LI H, LI H, et al. An overview of knowledge graph reasoning:key technologies and applications[J]. Journal of Sensor and Actuator Networks, 2022, 11(4):78. [2] 吴玺煜,陈启买,刘海,等. 基于知识图谱表示学习的协同过滤推荐算法[J]. 计算机工程, 2018, 44(2):226-232, 263. WU X Y, CHEN Q M, LIU H, et al. Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J]. Computer Engineering, 2018, 44(2):226-232, 263.(in Chinese) [3] 王智悦,于清,王楠,等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23):1-11. WANG Z Y, YU Q, WANG N, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer Engineering and Applications, 2020, 56(23):1-11.(in Chinese) [4] 蒋川宇,韩翔宇,杨文蕊,等. 医学知识图谱研究与应用综述[J]. 计算机科学, 2023, 50(3):83-93. JIANG C Y, HAN X Y, YANG W R, et al. Survey of medical knowledge graph research and application[J]. Computer Science, 2023, 50(3):83-93.(in Chinese) [5] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514. [6] BORSBOOM D, DESERNO M K, RHEMTULLA M, et al. Network analysis of multivariate data in psychological science[J]. Nature Reviews Methods Primers, 2021, 1:58. [7] SUCHANEK F M, ABITEBOUL S, SENELLART P. PARIS:probabilistic alignment of relations, instances, and schema[J]. Proceedings of the VLDB Endowment, 2011, 5(3):157-168. [8] BORDES A, USUNIER N, GARCIA A, et al. Translating embeddings for modeling multi-relational data[EB/OL].[2023-05-05].https://hal.science/hal-00920777/document. [9] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1):1112-1119. [10] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2015, 29(1):2181-2187. [11] SHI B X, WENINGER T. ProjE:embedding projection for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1):1236-1242. [12] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1):1811-1818. [13] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of European Semantic Web Conference. Berlin,Germany:Springer,2018:593-607. [14] KIPF T, WELLING M, Semi-supervised classification with graph convolutional networks[EB/OL].[2023-05-05]. https://doi.org/10.48550/arXiv.1609. 02907. [15] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, USA:Association for Computational Linguistics, 2018:327-333. [16] JIANG X, WANG Q, WANG B. Adaptive convolution for multi relational learning[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, USA:Association for Computational Linguistics, 2019:978-987. [17] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York,USA:ACM Press,2017:3859-3869. [18] GUO L, SUN Z, HU W. Learning to exploit long term relational dependencies in knowledge graphs[C]//Proceedings of International Conference on Machine Learning. Long Beach, USA:Association for Computing Machinery, 2019:2505-2514. [19] 邓凯旋, 陈鸿昶, 黄瑞阳. 基于标签传播能力的改进LPA算法[J]. 计算机工程, 2018, 44(3):60-64. DENG K X, CHEN H C, HUANG R Y. Improved LPA algorithm based on label propagation ability[J]. Computer Engineering, 2018, 44(3):60-64.(in Chinese) [20] CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York,USA:ACM Press,2017:1511-1517. [21] SUN Z Q, HU W, LI C K. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of International Semantic Web Conference. Berlin,Germany:Springer,2017:628-644. [22] SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Berlin,Germany:Springer,2018:4396-4402. [23] ZHANG Q H, SUN Z Q, HU W, et al. Multi-view knowledge graph embedding for entity alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Berlin,Germany:Springer,2019:5429-5435. [24] WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2018:349-357. [25] TEONG K S, SOON L K, SU T T. Schema-agnostic entity matching using pre-trained language models[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York,USA:ACM Press,2020:2241-2244. [26] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1):61-80. [27] WU Y T, LIU X, FENG Y S, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York,USA:ACM Press,2019:5278-5284. [28] GUO L B, SUN Z Q, ERMEI C, et al. Recurrent skipping networks for entity alignment[EB/OL].[2023-05-05].https://arxiv. org/abs/1811. 02318. [29] ZHU Y, LIU H Z, WU Z H, et al. Relation-aware neighborhood matching model for entity alignment[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5):4749-4756. [30] WU Y T, LIU X, FENG Y S, et al. Neighborhood matching network for entity alignment[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2020:6477-6487. [31] FEY M, LENSSEN J E, MORRIS C, et al. Deep graph matching consensus[C]//Proceeding of International Conference on Learning Representations. New York,USA:ACM Press,2020:1-23. [32] 张富, 杨琳艳, 李健伟, 等. 实体对齐研究综述[J]. 计算机学报, 2022, 45(6):1195-1225. ZHANG F, YANG L Y, LI J W, et al. An overview of entity alignment methods[J]. Chinese Journal of Computers, 2022, 45(6):1195-1225.(in Chinese) [33] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].[2023-05-05]. https://arxiv.org/abs/1710.10903. [34] BRODY S, URI A, ERAN Y. How attentive are graph attention networks?[EB/OL].[2023-05-05].https://arxiv. org/abs/2105. 14491. [35] MAO X, WANG W T, WU Y B, et al. LightEA:a scalable, robust, and interpretable entity alignment framework via three-view label propagation[C]//Proceedings of 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2022:825-838. [36] BALL K. An elementary introduction to modern convex geometry[EB/OL].[2023-05-05]. http://www.cse.yorku.ca/~andy/courses/6114/lecture-notes/Ball.pdf. [37] MAO X, WANG W T, WU Y B, et al. From alignment to assignment:frustratingly simple unsupervised entity alignment[EB/OL].[2023-05-05]. https://arxiv.org/abs/2109.02363v1. [38] GE C C, LIU X Z, CHEN L, et al. Make it easy:an effective end-to-end entity alignment framework[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,USA:ACM Press,2021:777-786. [39] SUN Z Q, HU W, LI C K. Cross-lingual entity alignment via joint attribute-preserving embedding[EB/OL].[2023-05-05].https://www.xueshufan.com/publication/2746582923. [40] XIANG Y J, ZHANG Z H, CHEN J Y, et al. OntoEA:ontology-guided entity alignment via joint knowledge graph embedding[C]//Proceedings of the Findings of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2021:1117-1128. |