[1] 王省, 康昭.基于光滑表示的半监督分类算法[J].计算机科学, 2021, 48(3):124-129. WANG X, KANG Z.Smooth representation-based semi-supervised classification[J].Computer Science, 2021, 48(3):124-129.(in Chinese) [2] 葛君伟, 杨广欣.基于共享最近邻的密度自适应邻域谱聚类算法[J].计算机工程, 2021, 47(8):116-123. GE J W, YANG G X.Spectral clustering algorithm for density adaptive neighborhood based on shared nearest neighbors[J].Computer Engineering, 2021, 47(8):116-123.(in Chinese) [3] 章蓉, 陈谊, 张梦录, 等.高维数据聚类可视分析方法综述[J].图学学报, 2020, 41(1):44-56. ZHANG R, CHEN Y, ZHANG M L, et al.Overviewing of visual analysis approaches for clustering high-dimensional data[J].Journal of Graphics, 2020, 41(1):44-56.(in Chinese) [4] KANG Z, ZHAO X J, PENG C, et al.Partition level multiview subspace clustering[J].Neural Networks:the Official Journal of the International Neural Network Society, 2020, 122:279-288. [5] KUMAR A, DAUMÉ H.A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning.New York, USA:ACM Press, 2011:393-400. [6] CHAO G Q, SUN S L, BI J B.A survey on multi-view clustering[EB/OL].[2021-08-12].https://arxiv.org/abs/1712.06246. [7] LIU J L, WANG C, GAO J, et al.Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of 2013 SIAM International Conference on Data Mining.Philadelphia, USA:Society for Industrial and Applied Mathematics, 2013:252-260. [8] KHAN G A, HU J, LI T R, et al.Multi-view data clustering via non-negative matrix factorization with manifold regularization[J].International Journal of Machine Learning and Cybernetics, 2022, 13(3):677-689. [9] HUANG S D, KANG Z, XU Z L.Self-weighted multi-view clustering with soft capped norm[J].Knowledge-Based Systems, 2018, 158:1-8. [10] ZHANG C, WANG S, LIU J, et al.Multi-view clustering via deep matrix factorization and partition alignment[C]//Proceedings of the 29th ACM International Conference on Multimedia.New York, USA:ACM Press, 2021:4156-4164. [11] LIU X W, ZHOU S H, WANG Y Q, et al.Optimal neighborhood kernel clustering with multiple kernels[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:2266-2272. [12] LÜ J C, KANG Z, LU X, et al.Pseudo-supervised deep subspace clustering[J].IEEE Transactions on Image Processing, 2021, 30:5252-5263. [13] KANG Z, LIN Z P, ZHU X F, et al.Structured graph learning for scalable subspace clustering:from single view to multiview[J].IEEE Transactions on Cybernetics, 2022, 52(9):8976-8986. [14] CHEN X J, YE Y M, XU X F, et al.A feature group weighting method for subspace clustering of high-dimensional data[J].Pattern Recognition, 2012, 45(1):434-446. [15] ELHAMIFAR E, VIDAL R.Sparse subspace clustering:algorithm, theory, and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2765-2781. [16] WANG B Y, HU Y L, GAO J B, et al.Learning adaptive neighborhood graph on Grassmann manifolds for video/image-set subspace clustering[J].IEEE Transactions on Multimedia, 2021, 23:216-227. [17] KANG Z, SHI G X, HUANG S D, et al.Multi-graph fusion for multi-view spectral clustering[J].Knowledge-Based Systems, 2020, 189:105102. [18] 周林, 平西建, 徐森, 等.基于谱聚类的聚类集成算法[J].自动化学报, 2012, 38(8):1335-1342. ZHOU L, PING X J, XU S, et al.Cluster ensemble based on spectral clustering[J].Acta Automatica Sinica, 2012, 38(8):1335-1342.(in Chinese) [19] HUANG S D, WANG H J, LI D C, et al.Spectral co-clustering ensemble[J].Knowledge-Based Systems, 2015, 84:46-55. [20] NIE F, LI J, LI X.Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.New York, USA:ACM Press, 2017:2564-2570. [21] ZHOU S, LIU X, LIU J, et al.Multi-view spectral clustering with optimal neighborhood Laplacian matrix[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:6965-6972. [22] ZHOU P, SHEN Y D, DU L, et al.Incremental multi-view spectral clustering[J].Knowledge-Based Systems, 2019, 174:73-86. [23] XIA T, TAO D C, MEI T, et al.Multiview spectral embedding[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2010, 40(6):1438-1446. [24] NIE F, LI J, LI X.Parameter-free auto-weighted multiple graph learning:a framework for multiview clustering and semi-supervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2016:1881-1887. [25] ZONG L, ZHANG X, LIU X, et al.Weighted multi-view spectral clustering based on spectral perturbation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1-10. [26] TANG J, QU M, WANG M Z, et al.LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web.New York, USA:ACM Press, 2015:1067-1077. [27] EL GHECHE M, CHIERCHIA G, FROSSARD P.OrthoNet:multilayer network data clustering[J].IEEE Transactions on Signal and Information Processing over Networks, 2020, 6:13-23. [28] MERCADO P, TUDISCO F, HEIN M.Clustering signed networks with the geometric mean of Laplacians[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2016:4428-4436. [29] HAN Q, XU K, AIROLDI E.Consistent estimation of dynamic and multi-layer block models[C]//Proceedings of International Conference on Machine Learning.[S.l.]:PMLR, 2015:1511-1520. [30] HEIMLICHER S, LELARGE M, MASSOULIÉ L.Community detection in the labelled stochastic block model[EB/OL].[2021-08-12].https://arxiv.org/pdf/1209.2910.pdf. [31] QIN F P, ZHANG A W, WANG S M, et al.Hyperspectral band selection based on spectral clustering and inter-class separability factor[J].Spectroscopy and Spectral Analysis, 2015, 35(5):1357-1364. [32] CORTES C, MOHRI M, ROSTAMIZADEH A.Algorithms for learning kernels based on centered alignment[J].The Journal of Machine Learning Research, 2012, 13(1):795-828. [33] BAEK M, KIM C.A review on spectral clustering and stochastic block models[J].Journal of the Korean Statistical Society, 2021, 50(3):818-831. [34] 柴变芳, 于剑, 贾彩燕, 等.一种基于随机块模型的快速广义社区发现算法[J].软件学报, 2013, 24(11):2699-2709. CHAI B F, YU J, JIA C Y, et al.Fast algorithm on stochastic block model for exploring general communities[J].Journal of Software, 2013, 24(11):2699-2709.(in Chinese) [35] LIM Y, PÁLFIA M.Matrix power means and the Karcher mean[J].Journal of Functional Analysis, 2012, 262(4):1498-1514. [36] ZHANG H, SRA S.First-order methods for geodesically convex optimization[C]//Proceedings of Conference on Learning Theory.[S.l.]:PMLR, 2016:1617-1638. [37] BINI D A, IANNAZZO B.Computing the Karcher mean of symmetric positive definite matrices[J].Linear Algebra and Its Applications, 2013, 438(4):1700-1710. [38] CHEN S S, DONOHO D L, SAUNDERS M A.Atomic decomposition by basis pursuit[J].SIAM Review, 2001, 43(1):129-159. [39] ZHAO Y, KARYPIS G.Criterion functions for document clustering:experiments and analysis[EB/OL].[2021-08-12].https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3151&rep=rep1&type=pdf. [40] NIE F P, CAI G H, LI X L.Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2017:2408-2414. |