[1] 刘洪启, 沈涛, 吴云, 等. 非信号控制公路平面交叉口渠化设计方法研究[J]. 公路, 2008, 53(11):164-168. LIU H Q, SHEN T, WU Y, et al. Research on channelization design methods of unsignalized highway at-grade intersection[J]. Highway, 2008, 53(11):164-168.(in Chinese) [2] 段续庭, 周宇康, 田大新, 等. 深度学习在自动驾驶领域应用综述[J]. 无人系统技术, 2021, 4(6):1-27. DUAN X T, ZHOU Y K, TIAN D X, et al. A review of deep learning applications for autonomous driving[J]. Unmanned Systems Technology, 2021, 4(6):1-27.(in Chinese) [3] 杨思明, 单征, 丁煜, 等. 深度强化学习研究综述[J]. 计算机工程, 2021, 47(12):19-29. YANG S M, SHAN Z, DING Y, et al. Survey of research on deep reinforcement learning[J]. Computer Engineering, 2021, 47(12):19-29.(in Chinese) [4] 李雪松, 张锲石, 宋呈群, 等. 自动驾驶场景下的轨迹预测技术综述[J]. 计算机工程, 2023, 49(5):1-11. LI X S, ZHANG Q S, SONG C Q, et al. Review of trajectory prediction technology in autonomous driving scenes[J]. Computer Engineering, 2023, 49(5):1-11.(in Chinese) [5] 欧阳卓, 周思源, 吕勇, 等. 基于深度强化学习的无信号灯交叉路口车辆控制[J]. 计算机科学, 2022, 49(3):46-51. OUYANG Z, ZHOU S Y, LYU Y, et al. DRL-based vehicle control strategy for signal-free intersections[J]. Computer Science, 2022, 49(3):46-51.(in Chinese) [6] LI G F, LIN S Y, LI S, et al. Learning automated driving in complex intersection scenarios based on camera sensors:a deep reinforcement learning approach[J]. IEEE Sensors Journal, 2022, 22(5):4687-4696. [7] KARGAR E, KYRKI V. Vision transformer for learning driving policies in complex multi-agent environments[EB/OL].[2023-06-01]. http://arxiv.org/abs/2109.06514. [8] 王曙燕, 万顷田. 自动驾驶车辆在无信号交叉口右转驾驶决策技术研究[J]. 计算机应用研究, 2023, 40(5):1468-1472. WANG S Y, WAN Q T. Right-turn driving decisions of autonomous vehicles at signal-free intersections[J]. Application Research of Computers, 2023, 40(5):1468-1472.(in Chinese) [9] LIU J D, BOYLE L N, BANERJEE A G. An inverse reinforcement learning approach for customizing automated lane change systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9):9261-9271. [10] 高振海, 闫相同, 高菲. 基于逆向强化学习的纵向自动驾驶决策方法[J]. 汽车工程, 2022, 44(7):969-975. GAO Z H, YAN X T, GAO F. A decision-making method for longitudinal autonomous driving based on inverse reinforcement learning[J]. Automotive Engineering, 2022, 44(7):969-975.(in Chinese) [11] HUANG Z Y, WU J D, LV C. Driving behavior modeling using naturalistic human driving data with inverse reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8):10239-10251. [12] CHEN D, JIANG L S, WANG Y, et al. Autonomous driving using safe reinforcement learning by incorporating a regret-based human lane-changing decision model[C]//Proceedings of the 2020 American Control Conference. Washington D. C., USA:IEEE Press, 2020:4355-4361. [13] KRASOWSKI H, WANG X, ALTHOFF M. Safe reinforcement learning for autonomous lane changing using set-based prediction[C]//Proceedings of the 23rd International Conference on Intelligent Transportation Systems(ITSC). Washington D. C., USA:IEEE Press, 2020:1-7. [14] DUAN J L, EBEN LI S, GUAN Y, et al. Hierarchical reinforcement learning for self-driving decision-making without reliance on labelled driving data[J]. IET Intelligent Transport Systems, 2020, 14(5):297-305. [15] WU J, HUANG Z, HUANG C, et al. Human-in-the-loop deep reinforcement learning with application to autonomous driving[EB/OL].[2023-06-01]. https://arxiv.org/abs/2104.07246v1. [16] LIANG X D, WANG T R, YANG L N, et al. CIRL:controllable imitative reinforcement learning for vision-based self-driving[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2018:604-620. [17] PFEIFFER M, SHUKLA S, TURCHETTA M, et al. Reinforced imitation:sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4423-4430. [18] CODEVILLA F, SANTANA E, LOPEZ A, et al. Exploring the limitations of behavior cloning for autonomous driving[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2019:9328-9337. [19] LIU H C, HUANG Z Y, WU J D, et al. Improved deep reinforcement learning with expert demonstrations for urban autonomous driving[C]//Proceedings of the 2022 IEEE Intelligent Vehicles Symposium. Washington D. C., USA:IEEE Press, 2022:921-928. [20] VEČRÍK M, HESTER T, SCHOLZ J, et al. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards[EB/OL].[2023-06-01]. https://arxiv.org/abs/1707.08817v1. [21] HUANG Z Y, WU J D, LV C. Efficient deep reinforcement learning with imitative expert priors for autonomous driving[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10):7391-7403. [22] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2018:3-19. [23] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL].[2023-06-01]. https://arxiv.org/abs/1511.05952v3. [24] ZHOU M, LUO J, VILLELA J, et al. SMARTS:scalable multi-agent reinforcement learning training school for autonomous driving[EB/OL].[2023-06-01]. https://arxiv.org/abs/2010.09776v2. [25] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic:off-policy maximum entropy deep reinforcement learning with a stochastic actor[EB/OL].[2023-06-01]. https://arxiv.org/abs/1801.01290v2. [26] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL].[2023-06-01]. https://arxiv.org/abs/1707.06347. |