1 |
CHEN Y, ZHAO F J, LU Y G, et al. Dynamic task offloading for mobile edge computing with hybrid energy supply. Tsinghua Science and Technology, 2023, 28(3): 421- 432.
doi: 10.26599/TST.2021.9010050
|
2 |
GHAZINOORY S, ROSHANDEL J, PARVIN F, et al. Smart city maturity models: a multidimensional synthesized approach. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2024, 14(1): e1516.
doi: 10.1002/widm.1516
|
3 |
TAN T, ZHAO M, ZENG Z W. Joint offloading and resource allocation based on UAV-assisted mobile edge computing. ACM Transactions on Sensor Networks, 2022, 18(3): 1- 21.
|
4 |
XU W, YANG Z H, NG D W K, et al. Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 9- 39.
doi: 10.1109/JSTSP.2023.3239189
|
5 |
HUA H C, LI Y T, WANG T H, et al. Edge computing with artificial intelligence: a machine learning perspective. ACM Computing Surveys, 2023, 55(9): 1- 35.
|
6 |
GUO C P, LIN Z Q, SONG J. A privacy protection approach in edge-computing based on maximized dnn partition strategy with energy saving. Journal of Cloud Computing, 2023, 12(1): 29.
doi: 10.1186/s13677-023-00404-y
|
7 |
WU C R, PENG Q L, XIA Y N, et al. Towards cost-effective and robust AI microservice deployment in edge computing environments. Future Generation Computer Systems, 2023, 141, 129- 142.
doi: 10.1016/j.future.2022.10.015
|
8 |
JIANG X H, HOU P, ZHU H B, et al. Dynamic and intelligent edge server placement based on deep reinforcement learning in mobile edge computing. Ad Hoc Networks, 2023, 145, 103172.
doi: 10.1016/j.adhoc.2023.103172
|
9 |
LUO F, ZHENG S, DING W C, et al. An edge server placement method based on reinforcement learning. Entropy, 2022, 24(3): 317.
doi: 10.3390/e24030317
|
10 |
LI Y Z, ZHOU A, MA X, et al. Profit-aware edge server placement. IEEE Internet of Things Journal, 2022, 9(1): 55- 67.
doi: 10.1109/JIOT.2021.3082898
|
11 |
ZHANG C, ZHOU G H, LI J J, et al. A multi-access edge computing enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm in industry 4.0. Journal of Manufacturing Systems, 2023, 66, 56- 70.
doi: 10.1016/j.jmsy.2022.11.015
|
12 |
LIU L, FENG J, MU X Y, et al. Asynchronous deep reinforcement learning for collaborative task computing and on-demand resource allocation in vehicular edge computing. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15513- 15526.
doi: 10.1109/TITS.2023.3249745
|
13 |
GUO F Y, TANG B, TANG M D, et al. Deep reinforcement learning-based microservice selection in mobile edge computing. Cluster Computing, 2023, 26(2): 1319- 1335.
doi: 10.1007/s10586-022-03661-9
|
14 |
许小龙, 方子介, 齐连永, 等. 车联网边缘计算环境下基于深度强化学习的分布式服务卸载方法. 计算机学报, 2021, 44(12): 2382- 2405.
doi: 10.11897/SP.J.1016.2021.02382
|
|
XU X L, FANG Z J, QI L Y, et al. A deep reinforcement learning-based distributed service off loading method for edge computing empowered Internet of vehicles. Chinese Journal of Computers, 2021, 44(12): 2382- 2405.
doi: 10.11897/SP.J.1016.2021.02382
|
15 |
REN D W, GUI X L, ZHANG K Y. Adaptive request scheduling and service caching for MEC-assisted IoT networks: an online learning approach. IEEE Internet of Things Journal, 2022, 9(18): 17372- 17386.
doi: 10.1109/JIOT.2022.3157677
|
16 |
MOSTAFA G A, ALI S. A cost-efficient IoT service placement approach using whale optimization algorithm in fog computing environment. Expert Systems With Applications, 2022, 200, 117012.
doi: 10.1016/j.eswa.2022.117012
|
17 |
XUE J B, WU Q Q, ZHANG H J. Cost optimization of UAV-MEC network calculation offloading: a multi-agent reinforcement learning method. Ad Hoc Networks, 2022, 136, 102981.
doi: 10.1016/j.adhoc.2022.102981
|
18 |
REN J, LIU J N, ZHANG Y M, et al. An efficient two-layer task offloading scheme for MEC system with multiple services providers[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2022: 1519-1528.
|
19 |
HAZRA A, RANA P, ADHIKARI M, et al. Fog computing for next-generation Internet of Things: fundamental, state-of-the-art and research challenges. Computer Science Review, 2023, 48, 100549.
doi: 10.1016/j.cosrev.2023.100549
|
20 |
WANG Y, TANG Z, HUANG A, et al. Placement of UAV-mounted edge servers for Internet of vehicles. IEEE Transactions on Vehicular Technology, 2024, 22, 1- 10.
|
21 |
GUO Y, WANG S G, ZHOU A, et al. User allocation-aware edge cloud placement in mobile edge computing. Software: Practice and Experience, 2020, 50(5): 489- 502.
doi: 10.1002/spe.2685
|
22 |
WANG S G, GUO Y, ZHANG N, et al. Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach. IEEE Transactions on Mobile Computing, 2021, 20(3): 939- 951.
doi: 10.1109/TMC.2019.2957804
|
23 |
HOU W J, WEN H, SONG H H, et al. Multiagent deep reinforcement learning for task offloading and resource allocation in cybertwin-based networks. IEEE Internet of Things Journal, 2021, 8(22): 16256- 16268.
doi: 10.1109/JIOT.2021.3095677
|
24 |
ZHAO L R, ZHANG Y L, DANG Z H. PRD-MADDPG: an efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers. Advances in Space Research, 2023, 72(2): 211- 230.
doi: 10.1016/j.asr.2023.03.014
|
25 |
CHEN Y Y, LIN Y H, ZHENG Z W, et al. Preference-aware edge server placement in the Internet of Things. IEEE Internet of Things Journal, 2022, 9(2): 1289- 1299.
doi: 10.1109/JIOT.2021.3079328
|
26 |
CHAKRABORTY S, DE D, MAZUMDAR K. DoME: dew computing based microservice execution in mobile edge using Q-learning. Applied Intelligence, 2023, 53(9): 10917- 10936.
doi: 10.1007/s10489-022-04087-x
|
27 |
AGHAPOUR Z, SHARIFIAN S, TAHERI H. Task offloading and resource allocation algorithm based on deep reinforcement learning for distributed AI execution tasks in IoT edge computing environments. Computer Networks, 2023, 223, 109577.
doi: 10.1016/j.comnet.2023.109577
|
28 |
WANG M, JIANG H, LI Y Z, et al. Location determination of hierarchical service facilities using a multi-layered greedy heuristic approach. Engineering Optimization, 2023, 55(8): 1422- 1436.
doi: 10.1080/0305215X.2022.2086540
|
29 |
XU M R, NIYATO D, ZHANG H L, et al. Sparks of GPTs in edge intelligence for metaverse: caching and inference for mobile AIGC services[EB/OL]. [2023-09-10]. http://arxiv.org/abs/2304.08782.
|