[1] LEON F,GAVRILESCU M.A review of tracking and trajectory prediction methods for autonomous driving[J].Mathematics,2021,9(6):660-696. [2] LEFÈVRE S,VASQUEZ D,LAUGIER C.A survey on motion prediction and risk assessment for intelligent vehicles[J].ROBOMECH Journal,2014,1(1):1-14. [3] 乔少杰,韩楠,丁治明,等.多模式移动对象不确定性轨迹预测模型[J].自动化学报,2018,44(4):608-618. QIAO S J,HAN N,DING Z M,et al.A multiple-motion-pattern trajectory prediction model for uncertain moving objects[J].Acta Automatica Sinica,2018,44(4):608-618.(in Chinese) [4] 张显炀,朱晓宇,林浩申,等.基于高斯混合-变分自编码器的轨迹预测算法[J].计算机工程,2020,46(7):50-57. ZHANG X Y,ZHU X Y,LIN H S,et al.Trajectory prediction algorithm based on Gaussian mixture-variational autoencoder[J].Computer Engineering,2020,46(7):50-57.(in Chinese) [5] 乔少杰,金琨,韩楠,等.一种基于高斯混合模型的轨迹预测算法[J].软件学报,2015,26(5):1048-1063. QIAO S J,JIN K,HAN N,et al.Trajectory prediction algorithm based on Gaussian mixture model[J].Journal of Software,2015,26(5):1048-1063.(in Chinese) [6] WIEST J,HÖFFKEN M,KREßEL U,et al.Probabilistic trajectory prediction with Gaussian mixture models[C]//Proceedings of IEEE Intelligent Vehicles Symposium.Washington D.C.,USA:IEEE Press,2012:141-146. [7] 高建,毛莺池,李志涛.基于高斯混合-时间序列模型的轨迹预测[J].计算机应用,2019,39(8):2261-2270. GAO J,MAO Y C,LI Z T.Trajectory prediction based on Gauss mixture time series model[J].Journal of Computer Applications,2019,39(8):2261-2270.(in Chinese) [8] XU W D,PAN J,WEI J Q,et al.Motion planning under uncertainty for on-road autonomous driving[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2014:2507-2512. [9] XIE G T,GAO H B,QIAN L J,et al.Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models[J].IEEE Transactions on Industrial Electronics,2017,65(7):5999-6008. [10] LI J X,DAI B,LI X H,et al.A real-time and predictive trajectory-generation motion planner for autonomous ground vehicles[C]//Proceedings of the 9th International Conference on Intelligent Human-Machine Systems and Cybernetics.Washington D.C.,USA:IEEE Press,2017:108-113. [11] 宗长富,王畅,何磊,等.基于双层隐式马尔科夫模型的驾驶意图辨识[J].汽车工程,2011,33(8):701-706. ZONG C F,WANG C,HE L,et al.Driving intention recognition based on double-layer HMM[J].Automotive Engineering,2011,33(8):701-706.(in Chinese) [12] XIE G T,GAO H B,HUANG B,et al.A driving behavior awareness model based on a dynamic Bayesian network and distributed genetic algorithm[J].International Journal of Computational Intelligence Systems,2018,11(1):469-482. [13] HU M J,LIAO Y,WANG W J,et al.Decision tree-based maneuver prediction for driver rear-end risk-avoidance behaviors in cut-in scenarios[EB/OL].[2022-07-11].https://www.hindawi.com/journals/jat/2017/7170358/. [14] SCHLECHTRIEMEN J,WIRTHMUELLER F,WEDEL A,et al.When will it change the lane?A probabilistic regression approach for rarely occurring events[C]//Proceedings of IEEE Intelligent Vehicles Symposium.Washington D.C.,USA:IEEE Press,2015:1373-1379. [15] DEO N,RANGESH A,TRIVEDI M M.How would surround vehicles move?A unified framework for maneuver classification and motion prediction[J].IEEE Transactions on Intelligent Vehicles,2018,3(2):129-140. [16] SCHLECHTRIEMEN J,WEDEL A,HILLENBRAND J,et al.A lane change detection approach using feature ranking with maximized predictive power[C]//Proceedings of IEEE Intelligent Vehicles Symposium.Washington D.C.,USA:IEEE Press,2014:108-114. [17] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2017:6000-6010. [18] ZHANG P,OUYANG W L,ZHANG P F,et al.SR-LSTM:state refinement for LSTM towards pedestrian trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:12077-12086. [19] ZHU Y L,QIAN D H,REN D C,et al.StarNet:pedestrian trajectory prediction using deep neural network in star topology[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2019:8075-8080. [20] HUANG Y F,BI H K,LI Z X,et al.STGAT:modeling spatial-temporal interactions for human trajectory prediction[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:6271-6280. [21] MEDSKER L,JAIN L C.Recurrent neural networks:design and applications[M].[S.l.]:CRC Press,2001. [22] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [23] ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:human trajectory prediction in crowded spaces[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:961-971. [24] CHANDRA R,BHATTACHARYA U,BERA A,et al.TraPHic:trajectory prediction in dense and heterogeneous traffic using weighted interactions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:8475-8484. [25] LECUN Y,BENGIO Y.Convolutional networks for images,speech and time-series[M].Cambridge,USA:MIT Press,1995. [26] QIN Y,SONG D,CHEN H,et al.A dual-stage attention-based recurrent neural network for time series prediction[EB/OL].[2022-07-11].https://arxiv.org/abs/1704.02971. [27] DAI S Z,LI L,LI Z H.Modeling vehicle interactions via modified LSTM models for trajectory prediction[J].IEEE Access,2019,7:38287-38296. [28] LI X,YING X W,CHUAH M C.GRIP:graph-based interaction-aware trajectory prediction[C]//Proceedings of IEEE Intelligent Transportation Systems Conference.Washington D.C.,USA:IEEE Press,2019:3960-3966. [29] DAN X.Spatial-temporal block and LSTM network for pedestrian trajectories prediction[EB/OL].[2022-07-11].https://arxiv.org/abs/2009.10468. [30] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2022-07-11].https://arxiv.org/abs/1609.02907. [31] LI K M,EIFFERT S,SHAN M,et al.Attentional-GCNN:adaptive pedestrian trajectory prediction towards generic autonomous vehicle use cases[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2021:14241-14247. [32] CASAS S,LUO W,URTASUN R.IntentNet:learning to predict intention from raw sensor data[EB/OL].[2022-07-11].https://arxiv.org/abs/2101.07907. [33] XIN L,WANG P,CHAN C Y,et al.Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems.Washington D.C.,USA:IEEE Press,2018:1441-1446. [34] CHANDRA R,GUAN T R,PANUGANTI S,et al.Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs[J].IEEE Robotics and Automation Letters,2020,5(3):4882-4890. [35] 季学武,费聪,何祥坤,等.基于LSTM网络的驾驶意图识别及车辆轨迹预测[J].中国公路学报,2019,32(6):34-42. JI X W,FEI C,HE X K,et al.Intention recognition and trajectory prediction for vehicles using LSTM network[J].China Journal of Highway and Transport,2019,32(6):34-42.(in Chinese) [36] AMIRIAN J,HAYET J B,PETTRÉ J.Social ways:learning multi-modal distributions of pedestrian trajectories with GANs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2019:2964-2972. [37] FANG L J,JIANG Q H,SHI J P,et al.TPNet:trajectory proposal network for motion prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:6796-6805. [38] NARAYANAN S,MOSLEMI R,PITTALUGA F,et al.Divide-and-conquer for lane-aware diverse trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:15794-15803. [39] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [40] GUPTA A,JOHNSON J,LI F F,et al.Social GAN:socially acceptable trajectories with generative adversarial networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2255-2264. [41] 孙亚圣,姜奇,胡洁,等.基于注意力机制的行人轨迹预测生成模型[J].计算机应用,2019,39(3):668-674. SUN Y S,JIANG Q,HU J,et al.Attention mechanism based pedestrian trajectory prediction generation model[J].Journal of Computer Applications,2019,39(3):668-674.(in Chinese) [42] BRITO B,ZHU H,PAN W,et al.Social-VRNN:one-shot multi-modal trajectory prediction for interacting pedestrians[EB/OL].[2022-07-11].https://arxiv.org/abs/2010.09056. [43] DEO N,TRIVEDI M M.Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2018:15491-15498. [44] GILLES T,SABATINI S,TSISHKOU D,et al.HOME:heatmap output for future motion estimation[C]//Proceedings of IEEE International Intelligent Transportation Systems Conference.Washington D.C.,USA:IEEE Press,2021:500-507. [45] GU J R,SUN C,ZHAO H.DenseTNT:end-to-end trajectory prediction from dense goal sets[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2021:15283-15292. [46] SHAFIEE N,PADIR T,ELHAMIFAR E.Introvert:human trajectory prediction via conditional 3D attention[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:16810-16820. [47] HUYNH M,ALAGHBAND G.Trajectory prediction by coupling Scene-LSTM with human movement LSTM[M].Berlin,Germany:Springer,2019. [48] SADEGHIAN A,KOSARAJU V,SADEGHIAN A,et al.SoPhie:an attentive GAN for predicting paths compliant to social and physical constraints[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:1349-1358. [49] LEE N,CHOI W,VERNAZA P,et al.DESIRE:distant future prediction in dynamic scenes with interacting agents[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2165-2174. [50] RELLA E M,ZAECH J N,LINIGER A,et al.Decoder fusion RNN:context and interaction aware decoders for trajectory prediction[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2021:5937-5943. [51] GAO J Y,SUN C,ZHAO H,et al.VectorNet:encoding HD maps and agent dynamics from vectorized representation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:11522-11530. [52] ZHAO H,GAO J,LAN T,et al.TNT:target-driven trajectory prediction[EB/OL].[2022-07-11].https://arxiv.org/abs/2008.08294. [53] ZHAO T Y,XU Y F,MONFORT M,et al.Multi-agent tensor fusion for contextual trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:12118-12126. [54] PFEIFFER M,PAOLO G,SOMMER H,et al.A data-driven model for interaction-aware pedestrian motion prediction in object cluttered environments[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2018:5921-5928. [55] XUE H,HUYNH D Q,REYNOLDS M.SS-LSTM:a hierarchical LSTM model for pedestrian trajectory prediction[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision.Washington D.C.,USA:IEEE Press,2018:1186-1194. [56] CAI Y F,WANG Z H,WANG H,et al.Environment-attention network for vehicle trajectory prediction[J].IEEE Transactions on Vehicular Technology,2021,70(11):11216-11227. [57] VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2022-07-11].https://arxiv.org/abs/1710.10903. [58] SHI L S,WANG L,LONG C J,et al.SGCN:sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2021:8990-8999. [59] Federal Highway Administration.NGSIM(Next Generation Simulation)[EB/OL].[2022-07-11].https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. [60] LERNER A,CHRYSANTHOU Y,LISCHINSKI D.Crowds by example[J].Computer Graphics Forum,2007,26(3):655-664. [61] PELLEGRINI S,ESS A,SCHINDLER K,et al.You'll never walk alone:modeling social behavior for multi-target tracking[C]//Proceedings of the 12th International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:261-268. [62] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:3354-3361. [63] ROBICQUET A,SADEGHIAN A,ALAHI A,et al.Learning social etiquette:human trajectory understanding in crowded scenes[M].Berlin,Germany:Springer,2016. [64] KRAJEWSKI R,BOCK J,KLOEKER L,et al.The HighD dataset:a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems.Washington D.C.,USA:IEEE Press,2018:2118-2125. [65] ZHAN W,SUN L,WANG D,et al.Interaction dataset:an international,adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps[EB/OL].[2022-07-11].https://arxiv.org/abs/1910.03088. [66] CHANG M F,LAMBERT J,SANGKLOY P,et al.Argoverse:3D tracking and forecasting with rich maps[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:8740-8749. [67] HUANG X Y,WANG P,CHENG X J,et al.The Apolloscape open dataset for autonomous driving and its application[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(10):2702-2719. [68] CAESAR H,BANKITI V,LANG A H,et al.NuScenes:a multimodal dataset for autonomous driving[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:11618-11628. [69] ZENG W Y,LIANG M,LIAO R J,et al.LaneRCNN:distributed representations for graph-centric motion forecasting[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2021:532-539. [70] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [71] CHANDRA R,BHATTACHARYA U,RONCAL C,et al.RobustTP:end-to-end trajectory prediction for heterogeneous road-agents in dense traffic with noisy sensor inputs[C]//Proceedings of the 3rd ACM Computer Science in Cars Symposium.New York,USA:ACM Press,2019:1-9. |