1 |
ZHANG J, ZHONG S Q, WANG T, et al. Blockchain-based systems and applications: a survey. Journal of Internet Technology, 2020, 21 (1): 1- 14.
URL
|
2 |
田志宏. 面向物联网的区块链共识机制研究[D]. 烟台: 烟台大学, 2022.
|
|
TIAN Z H. Research on blockchain consensus mechanism for Internet of Things[D]. Yantai: Yantai University, 2022. (in Chinese)
|
3 |
MANOJ K, ANNAPPA B, LIKEWIN T, et al. Blockchain technology and applications[M]. [S. l.]: CRC Press, 2022.
|
4 |
MORKUNAS V J, PASCHEN J, BOON E. How blockchain technologies impact your business model. Business Horizons, 2019, 62 (3): 295- 306.
doi: 10.1016/j.bushor.2019.01.009
|
5 |
KUO T T, KIM H E, OHNO-MACHADO L. Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 2017, 24 (6): 1211- 1220.
doi: 10.1093/jamia/ocx068
|
6 |
HU T, LIU X L, CHEN T, et al. Transaction-based classification and detection approach for Ethereum smart contract. Information Processing & Management, 2021, 58 (2): 102462.
doi: 10.1016/j.ipm.2020.102462
|
7 |
蒲松涛, 刘倩. 全球公有链技术评估及指数编制. 网络空间安全, 2018, 9 (10): 1- 6.
doi: 10.3969/j.issn.1674-9456.2018.10.001
|
|
PU S T, LIU Q. Global public blockchain technology assessment and index compilation. Cyberspace Security, 2018, 9 (10): 1- 6.
doi: 10.3969/j.issn.1674-9456.2018.10.001
|
8 |
ROBINSON P, BRAINARD J. Anonymous state pinning for private blockchains[C]//Proceedings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and the 13th IEEE International Conference on Big Data Science and Engineering. Washington D. C., USA: IEEE Press, 2019: 827-834.
|
9 |
陆明远, 张帆. 基于私有区块链的分布式信息安全系统设计. 电子设计工程, 2021, 29 (7): 54-57, 62.
doi: 10.14022/j.issn1674-6236.2021.07.012
|
|
LU M Y, ZHANG F. Design of distributed information security system based on private blockchain. Electronic Design Engineering, 2021, 29 (7): 54-57, 62.
doi: 10.14022/j.issn1674-6236.2021.07.012
|
10 |
ZAVOLOKINA L, ZIOLKOWSKI R, BAUER I. Management, governance, and value creation in a blockchain consortium. MIS Quarterly Executive, 2020, 19 (1): 1- 17.
doi: 10.17705/2msqe.00022
|
11 |
YIN H, WEI Y H, LI Y W, et al. Consensus in lens of consortium blockchain: an empirical study[C]//Proceedings of International Conference on Algorithms and Architectures for Parallel Processing. Berlin, Germany: Springer, 2020: 282-296.
|
12 |
CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]//Proceedings of the 3rd Symposium on Operating Systems Design and Implementation. New York, USA: ACM Press, 1999: 173-186.
|
13 |
ROBEN C L, REGIO A M, CHARLES V N, et al. Impact of consensus on appendable-block blockchain for IoT[C]//Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. New York, USA: ACM Press, 2019: 228-237.
|
14 |
XU G Q, BAI H P, XING J, et al. SG-PBFT: a secure and highly efficient distributed blockchain PBFT consensus algorithm for intelligent Internet of vehicles. Journal of Parallel and Distributed Computing, 2022, 164, 1- 11.
doi: 10.1016/j.jpdc.2022.01.029
|
15 |
陈宇, 贾连兴. 面向无人机集群的双层分组拜占庭容错算法. 通信学报, 2022, 43 (1): 96- 103.
URL
|
|
CHEN Y, JIA L X. Two-layer grouped Byzantine fault tolerance algorithm for UAV swarm. Journal on Communications, 2022, 43 (1): 96- 103.
URL
|
16 |
LIU S N, ZHANG R H, LIU C Z, et al. Improvement of the PBFT algorithm based on grouping and reputation value voting. International Journal of Digital Crime and Forensics, 2022, 14 (3): 1- 15.
URL
|
17 |
LAO L, DAI X H, XIAO B, et al. G-PBFT: a location-based and scalable consensus protocol for IoT-blockchain applications[C]//Proceedings of IEEE International Parallel and Distributed Processing Symposium. Washington D. C., USA: IEEE Press, 2020: 664-673.
|
18 |
WANG Y, SONG Z, CHENG T. Improvement research of PBFT consensus algorithm based on credit[C]//Proceedings of International Conference on Blockchain and Trustworthy Systems. Berlin, Germany: Springer, 2020: 47-59.
|
19 |
YANG J, JIA Z H, SU R G, et al. Improved fault-tolerant consensus based on the PBFT algorithm. IEEE Access, 2022, 10, 30274- 30283.
doi: 10.1109/ACCESS.2022.3153701
|
20 |
XU G X, WANG Y S. Improved PBFT algorithm based on vague sets. Security and Communication Networks, 2022, 2022, 6144664.
URL
|
21 |
ALMAKKI R, ALSUWAIDAN L, KHAN S, et al. Fault tolerance Byzantine algorithm for lower overhead blockchain. Security and Communication Networks, 2022, 2022, 1855238.
|
22 |
LI Y X, WANG Z, FAN J, et al. An extensible consensus algorithm based on PBFT[C]//Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Washington D. C., USA: IEEE Press, 2020: 17-23.
|
23 |
XIE M Y, LIU J, CHEN S Y, et al. Primary node election based on probabilistic linguistic term set with confidence interval in the PBFT consensus mechanism for blockchain. Complex & Intelligent Systems, 2023, 9 (2): 1507- 1524.
doi: 10.1007/s40747-022-00857-9
|
24 |
CHEN Y N, LI M, ZHU X H, et al. An improved algorithm for practical Byzantine fault tolerance to large-scale consortium chain. Information Processing & Management, 2022, 59 (2): 102884.
|
25 |
CHEN J H, ZHANG X A, SHANGGUAN P F. Improved PBFT algorithm based on reputation and voting mechanism. Journal of Physics: Conference Series, 2020, 1486 (3): 032023.
doi: 10.1088/1742-6596/1486/3/032023
|
26 |
LIU P, REN S A, WANG J, et al. A blockchain consensus optimization-based algorithm for food traceability. Mobile Information Systems, 2022, 2022, 1529938.
URL
|
27 |
吴宇森, 刘伊然, 吴沅赛, 等. 基于分组Raft机制的PBFT共识算法改进方案设计. 电子技术与软件工程, 2021, (24): 254- 258.
URL
|
|
WU Y S, LIU Y R, WU Y S, et al. Improved scheme design of PBFT consensus algorithm based on grouping Raft mechanism. Electronic Technology & Software Engineering, 2021, (24): 254- 258.
URL
|