1 |
陶洋, 鲍灵浪, 胡昊. 结合表示学习与嵌入子空间学习的降维方法. 计算机工程, 2021, 47 (6): 83-87, 97.
doi: 10.19678/j.issn.1000-3428.0057932
|
|
TAO Y , BAO L L , HU H . Dimensionality reduction method combining representation learning and embedded subspace learning. Computer Engineering, 2021, 47 (6): 83-87, 97.
doi: 10.19678/j.issn.1000-3428.0057932
|
2 |
陈良臣, 高曙, 刘宝旭, 等. 网络流量异常检测中的维数约简研究. 计算机工程, 2020, 46 (2): 11- 20.
doi: 10.19678/j.issn.1000-3428.0056532
|
|
CHEN L C , GAO S , LIU B X , et al. Research on dimensionality reduction in network traffic anomaly detection. Computer Engineering, 2020, 46 (2): 11- 20.
doi: 10.19678/j.issn.1000-3428.0056532
|
3 |
赵慧, 于金钊. 可加风险模型下现状数据的降维问题. 数理统计与管理, 2023, 42 (3): 439- 448.
doi: 10.13860/j.cnki.sltj.20221123-006
|
|
ZHAO H , YU J Z . Dimension reduction for additive risk model with current status data. Journal of Applied Statistics and Management, 2023, 42 (3): 439- 448.
doi: 10.13860/j.cnki.sltj.20221123-006
|
4 |
RAN R S , FENG J , ZHANG S G , et al. A general matrix function dimensionality reduction framework and extension for manifold learning. IEEE Transactions on Cybernetics, 2022, 52 (4): 2137- 2148.
doi: 10.1109/TCYB.2020.3003620
|
5 |
ZHANG T Y , SHEN F R , ZHU T , et al. An evolutionary orthogonal component analysis method for incremental dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (1): 392- 405.
doi: 10.1109/TNNLS.2020.3027852
|
6 |
强倩瑶, 张斌. 灵活自适应的无监督降维. 计算机学报, 2022, 45 (11): 2290- 2305.
doi: 10.11897/SP.J.1016.2022.02290
|
|
QIANG Q Y , ZHANG B . Flexible and adaptive unsupervised dimension reduction. Chinese Journal of Computers, 2022, 45 (11): 2290- 2305.
doi: 10.11897/SP.J.1016.2022.02290
|
7 |
SU B , DING X Q , WANG H , et al. Discriminative dimensionality reduction for multi-dimensional sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (1): 77- 91.
doi: 10.1109/TPAMI.2017.2665545
|
8 |
HALLAJI E , FARAJZADEH-ZANJANI M , RAZAVI-FAR R , et al. Constrained generative adversarial learning for dimensionality reduction. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (3): 2394- 2405.
|
9 |
ZHOU R X , GAO W S , DING D W , et al. Supervised dimensionality reduction technology of generalized discriminant component analysis and its kernelization forms. Pattern Recognition, 2022, 124, 108450.
doi: 10.1016/j.patcog.2021.108450
|
10 |
NIE F P , XU D , TSANG I W H , et al. Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Transactions on Image Processing, 2010, 19 (7): 1921- 1932.
doi: 10.1109/TIP.2010.2044958
|
11 |
NIE F P , DONG X , LI X L . Unsupervised and semisupervised projection with graph optimization. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (4): 1547- 1559.
doi: 10.1109/TNNLS.2020.2984958
|
12 |
WANG F , ZHU L , XIE L , et al. Label propagation with structured graph learning for semi-supervised dimension reduction. Knowledge-Based Systems, 2021, 225, 107130.
doi: 10.1016/j.knosys.2021.107130
|
13 |
HAN B, YAO Q M, LIU T L, et al. A survey of label-noise representation learning: past, present and future[EB/OL]. [2023-03-17]. https://arxiv.org/abs/2011.04406.
|
14 |
XIA X B , HAN B , WANG N N , et al. Extended T: learning with mixed closed-set and open-set noisy labels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (3): 3047- 3058.
|
15 |
KUMAR M, PACKER B, KOLLER D. Self-paced learning for latent variable models[C]//Proceedings of Neural Information Processing Systems Conference. New York, USA: ACM Press, 2010: 1189-1197.
|
16 |
MENG D Y , ZHAO Q , JIANG L . A theoretical understanding of self-paced learning. Information Sciences, 2017, 414, 319- 328.
doi: 10.1016/j.ins.2017.05.043
|
17 |
FAN M Y , GU N N , QIAO H , et al. Dimensionality reduction: an interpretation from manifold regularization perspective. Information Sciences, 2014, 277, 694- 714.
doi: 10.1016/j.ins.2014.03.011
|
18 |
BELKIN M , NIYOGI P , SINDHWANI V . Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7, 2399- 2434.
|
19 |
SONG Y Q , NIE F P , ZHANG C S , et al. A unified framework for semi-supervised dimensionality reduction. Pattern Recognition, 2008, 41 (9): 2789- 2799.
doi: 10.1016/j.patcog.2008.01.001
|
20 |
束俊, 孟德宇, 徐宗本. 元自步学习. 中国科学: 信息科学, 2020, 50 (6): 781- 793.
URL
|
|
SHU J , MENG D Y , XU Z B . Meta self-paced learning. Scientia Sinica(Informationis), 2020, 50 (6): 781- 793.
URL
|
21 |
MA F , MENG D , DONG X , et al. Self-paced multi-view co-training. Journal of Machine Learning Research, 2020, 21, 1- 38.
|
22 |
ZHANG W C , XU D , OUYANG W L , et al. Self-paced collaborative and adversarial network for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (6): 2047- 2061.
doi: 10.1109/TPAMI.2019.2962476
|
23 |
LIN L , WANG K Z , MENG D Y , et al. Active self-paced learning for cost-effective and progressive face identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (1): 7- 19.
doi: 10.1109/TPAMI.2017.2652459
|
24 |
YANG J F , WU X P , LIANG J , et al. Self-paced balance learning for clinical skin disease recognition. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (8): 2832- 2846.
doi: 10.1109/TNNLS.2019.2917524
|
25 |
刘莹莹, 邱崧, 孙力, 等. 基于多视角自步学习的人体动作识别方法. 计算机工程, 2018, 44 (2): 257- 263.
URL
|
|
LIU Y Y , QIU S , SUN L , et al. Human action recognition method based on multi-view self-paced learning. Computer Engineering, 2018, 44 (2): 257- 263.
URL
|
26 |
CHENG B , YANG J C , YAN S C , et al. Learning with l1-graph for image analysis. IEEE Transactions on Image Processing, 2010, 19 (4): 858- 866.
doi: 10.1109/TIP.2009.2038764
|
27 |
LIU G C , LIN Z C , YAN S C , et al. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (1): 171- 184.
|
28 |
HE X F , YAN S C , HU Y X , et al. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (3): 328- 340.
|
29 |
WRIGHT J , YANG A Y , GANESH A , et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210- 227.
|
30 |
BAZARAA M , SHERALI H , SHETTY C . Nonlinear programming: theory and algorithms. 3rd ed New York, USA: John Wiley & Sons, 2006.
|