1 |
董金耐, 杨淼, 谢卓冉, 等. 水下图像目标检测数据集及检测算法综述. 海洋技术学报, 2022, 41(5): 60- 72.
|
|
DONG J N, YANG M, XIE Z R, et al. Overview of underwater image object detection data set and detection algorithms. Journal of Ocean Technology, 2022, 41(5): 60- 72.
|
2 |
张鹏程, 王冰洁, 徐航, 等. 布尔混沌调制激光雷达水下目标成像实验研究. 半导体光电, 2022, 43(5): 999- 1004.
|
|
ZHANG P C, WANG B J, XU H, et al. Experimental study on underwater target imaging of Boolean chaos modulated LiDAR. Semiconductor Optoelectronics, 2022, 43(5): 999- 1004.
|
3 |
张胜虎, 马惠敏. 遮挡对于目标检测的影响分析. 图学学报, 2020, 41(6): 891- 896.
|
|
ZHANG S H, MA H M. An analysis of occlusion influence on object detection. Journal of Graphics, 2020, 41(6): 891- 896.
|
4 |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述. 计算机工程, 2022, 48(7): 1- 12.
URL
|
|
LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms. Computer Engineering, 2022, 48(7): 1- 12.
URL
|
5 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
6 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
8 |
|
9 |
SUN X, SHI J Y, LIU L P, et al. Transferring deep knowledge for object recognition in low-quality underwater videos. Neurocomputing, 2018, 275, 897- 908.
doi: 10.1016/j.neucom.2017.09.044
|
10 |
XU F Q, WANG H B, PENG J J, et al. Scale-aware feature pyramid architecture for marine object detection. Neural Computing and Applications, 2021, 33(8): 3637- 3653.
doi: 10.1007/s00521-020-05217-7
|
11 |
WANG X L, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2606-2615.
|
12 |
王凤随, 王启胜, 陈金刚, 等. 基于注意力机制和Soft-NMS的改进Faster R-CNN目标检测算法. 激光与光电子学进展, 2021, 58(24): 405- 416.
|
|
WANG F S, WANG Q S, CHEN J G, et al. Improved Faster R-CNN target detection algorithm based on attention mechanism and Soft-NMS. Laser & Optoelectronics Progress, 2021, 58(24): 405- 416.
|
13 |
赵晓飞, 于双和, 李清波, 等. 基于注意力机制的水下目标检测算法. 扬州大学学报(自然科学版), 2021, 24(1): 62- 67.
|
|
ZHAO X F, YU S H, LI Q B, et al. Underwater object detection algorithm based on attention mechanism. Journal of Yangzhou University (Natural Science Edition), 2021, 24(1): 62- 67.
|
14 |
连泽宇, 田景文. 基于掩膜生成网络的遮挡人脸检测方法. 计算机工程, 2021, 47(11): 292-297, 304.
URL
|
|
LIAN Z Y, TIAN J W. Occluded face detection method based on mask generation network. Computer Engineering, 2021, 47(11): 292-297, 304.
URL
|
15 |
史建柯, 乔美英, 李冰锋, 等. 基于注意力机制的水下遮挡目标检测算法. 电子科技, 2023, 36(5): 62- 70.
|
|
SHI J K, QIAO M Y, LI B F, et al. Underwater occlusion target detection algorithm based on attention mechanism. Electronic Science and Technology, 2023, 36(5): 62- 70.
|
16 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
17 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
19 |
HSIAO T Y, CHANG Y C, CHOU H H, et al. Filter-based deep-compression with global average pooling for convolutional networks. Journal of Systems Architecture, 2019, 95, 9- 18.
doi: 10.1016/j.sysarc.2019.02.008
|
20 |
SHU Y Y, YU B S, XU H M, et al. Improving fine-grained visual recognition in low data regimes via self-boosting attention mechanism[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2208.00617.
|
21 |
ZUO X, LI J J, HUANG J, et al. Pedestrian detection based on one-stage YOLO algorithm. Journal of Physics: Conference Series, 2021, 1871(1): 012131.
|
22 |
YAN Z Y, YAN M L, SUN H, et al. Cloud and cloud shadow detection using multilevel feature fused segmentation network. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1600- 1604.
|
23 |
LEI F, TANG F F, LI S H. Underwater target detection algorithm based on improved YOLOv5. Journal of Marine Science and Engineering, 2022, 10(3): 310.
|
24 |
ISA I S, ROSLI M S A, YUSOF U K, et al. Optimizing the hyperparameter tuning of YOLOv5 for underwater detection. IEEE Access, 2022, 10, 52818- 52831.
|
25 |
XU Q Y, ZHANG X F, CHENG R S, et al. Occlusion problem-oriented adversarial Faster-RCNN scheme. IEEE Access, 2019, 7, 170362- 170373.
|
26 |
|
27 |
LIN W H, ZHONG J X, LIU S, et al. RoIMiX: proposal-fusion among multiple images for underwater object detection[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 2588-2592.
|