[1] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [2] ZHANG L,ZHANG L,MOU X,et al.FSIM:a feature similarity index for image quality assessment[J].IEEE Transactions on Image Processing,2011,20(8):2378-2386. [3] WANG Wei,LIU Jing,YANG Weiwei,et al.Blur image quality assessment based on DCT domain texture structure similarity[J].Computer Engineering,2015,41(11):253-256.(in Chinese) 王威,刘婧,杨蔚蔚,等.基于DCT域纹理结构相似度的模糊图像质量评价[J].计算机工程,2015,41(11):253-256. [4] FENG Mingkun,ZHAO Shengmei,SUN Lihui,et al.Image quality assessment based on local Gaussian weighted fusion[J].Computer Engineering,2016,42(8):237-242.(in Chinese) 丰明坤,赵生妹,孙丽慧,等.基于局部高斯加权融合的图像质量评价[J].计算机工程,2016,42(8):237-242. [5] MA L,LI S,ZHANG F,et al.Reduced-reference image quality assessment using reorganized DCT-based image representation[J].IEEE Transactions on Multimedia,2011,13(4):824-829. [6] VAPNIK V,GOLOWICH S E,SMOLA A.Support vector method for function approximation,regression estimation,and signal processing[J].Advances in Neural Information Processing Systems,1970,9:281-287. [7] MITTAL A,MOORTHY A K,BOVIK A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,2012,21(12):4695-4708. [8] ZHANG Y,CHANDLER D M.An algorithm for no-reference image quality assessment based on log-derivative statistics of natural scenes[C]//Proceedings of2013SPIE of Image Quality and System Performance.San Francisco,USA:SPIE Press,2013:256-263. [9] MOORTHY A K,BOVIK A C.A two-step framework for constructing blind image quality indices[J].IEEE Signal Processing Letters,2010,17(5):513-516. [10] KANG L,YE P,LI Y.Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of2014IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:1733-1740. [11] BIANCO S,CELONA L,NAPOLETANO P,et al.On the use of deep learning for blind image quality assessment[J].Signal,Image and Video Processing,2018,12(2):355-362. [12] SUN C,LI H,LI W.No-reference image quality assessment based on global and local content perception[C]//Proceedings of2016IEEE Conference on Visual Communications and Image Processing.Washington D.C.,USA:IEEE Press,2016:23-63. [13] BOSSE S,MANIRY D,MÜLLER K R,et al.Deep neural networks for no-reference and full-reference image quality assessment[J].IEEE Transactions on Image Processing,2016,27(1):206-219. [14] KIM J,LEE S.Fully deep blind image quality predictor[J].IEEE Journal of Selected Topics in Signal Processing,2017,11(1):206-220. [15] LI Y,PO L M,FENG L,et al.No-reference image quality assessment with deep convolutional neural networks[C]//Proceedings of IEEE International Conference on Digital Signal Processing.Washington D.C.,USA:IEEE Press,2016:266-278. [16] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1203-1240. [17] ZHUANG Fuzhen,LUO Ping,HE Qing,et al.Research progress of transfer learning[J].Journal of Software,2015,26(1):26-39.(in Chinese)庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39. [18] NIKOLAY P,LIAN J,OLEG L,et al.Image database TID2013:peculiarities,results and perspectives[J].Signal Processing:Image Communication,2015,30:57-77. [19] GHADIYARAM D,BOVIK A C.Massive online crowdsourced study of subjective and objective picture quality[J].IEEE Transactions on Image Processing,2016,25(1):372-387. [20] WANG Z,LI Q.Information content weighting for perceptual image quality assessment[J].IEEE Transactions on Image Processing,2011,20(5):1185-1198. [21] LIU A,LIN W,NARWARIA M.Image quality assessment based on gradient similarity[J].IEEE Transactions on Image Processing,2012,21(4):1500-1512. [22] MITTAL A,SOUNDARARAJAN R,BOVIK A C.Making a "completely blind" image quality analyzer[J].IEEE Signal Processing Letters,2013,20(3):209-212. [23] LIU L,DONG H,HUANG H,et al.No-reference image quality assessment in curvelet domain[J].Signal Processing:Image Communication,2014,29(4):494-505. [24] HUANG G,LIU Z,MAATEN L V D,et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:52-63. |