[1] DAVID F.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 47(7):6-7. [2] 段仲静, 李少波, 胡建军, 等.深度学习目标检测方法及其主流框架综述[J].激光与光电子学进展, 2020, 57(12):1-16. DUAN Z J, LI S B, HU J J, et al.Summary of deep learning target detection methods and mainstream frameworks[J].Laser and Optoelectronics Progress, 2020, 57(12):1-16.(in Chinese) [3] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [4] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [5] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149. [6] HE K, GKIOXARI G, DOLLÁR D, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1-10. [7] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [8] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [9] JOSEPH R, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-03-25].https://arxiv.org/pdf/1804.02767.pdf. [10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-03-25].https://arxiv.org/abs/2004.10934. [11] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2016:21-37. [12] TAN M X, PANG R M, LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-10. [13] WANG C Y, LIAO H Y M, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Workshops.Washington D.C., USA:IEEE Press, 2020:390-399. [14] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1-10. [15] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1-10. [16] 田强, 贾小宁.基于深度残差网络的车标识别[J].吉林大学学报(理学版), 2021, 59(2):319-324. TIAN Q, JIA X N.Vehicle logo recognition basedon deep residual network[J].Journal of Jilin University (Science Edition), 2021, 59(2):319-324.(in Chinese) [17] LI Y Z, YUAN Y.Convergence analysis of two-layer neural networks with ReLU activation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:597-607. [18] XU J, LI Z S, DU B, et al.Reluplex made more practical:Leaky ReLU[C]//Proceedings of IEEE Symposium on Computers and Communications.Washington D.C., USA:IEEE Press, 2020:1-7. [19] 刘建伟, 赵会丹, 罗雄麟, 等.深度学习批归一化及其相关算法研究进展[J].自动化学报, 2020, 46(6):1090-1120. LIU J W, ZHAO H D, LUO X L, et al.Research progress on batch normalization of deep learning and its related algorithms[J].Acta Automatica Sinica, 2020, 46(6):1090-1120.(in Chinese) [20] HSIAO T Y, CHANG Y C, CHOU H H, et al.Filter-based deep-compression with global average pooling for convolutional networks[J].Journal of Systems Architecture, 2019, 95(12):9-18. [21] LIU W Y, WEN Y D, YU Z D, et al.Large-margin softmax loss for convolutional neural networks[EB/OL].[2021-03-25].https://arxiv.org/pdf/1612.02295.pdf. [22] YU F, CHEN H F, WANG X, et al.BDD100K:a diverse driving dataset for heterogeneous multitask learning[EB/OL].[2021-03-25].https://arxiv.org/pdf/1805.04687.pdf. [23] 史文旭, 谭代伦, 鲍胜利.特征增强SSD算法及其在遥感目标检测中的应用[J].光子学报, 2020, 49(1):154-163. SHI W X, TAN D L, BAO S L.Feature enhancement SSD algorithm and its application in remote sensing images target detection[J].Acta Photonnica Sinica, 2020, 49(1):154-163.(in Chinese) [24] 雷华迪, 陈东方, 王晓峰.基于级联SSD的目标检测算法[J].计算机工程与设计, 2020, 41(12):3517-3524. LEI H D, CHEN D F, WANG X F, Target detection algorithm based on cascaded SSD[J].Computer Engineering and Design, 2020, 41(12):3517-3524.(in Chinese) |