作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (1): 39-49. doi: 10.19678/j.issn.1000-3428.0067004

• 热点与综述 • 上一篇    下一篇

基于Fabric的海量交易数据上链预处理机制

刘颖1,2,3,*(), 马玉鹏1,3, 赵凡1,3, 王轶1,3, 蒋同海1,3   

  1. 1. 中国科学院新疆理化技术研究所, 新疆 乌鲁木齐 830011
    2. 中国科学院大学, 北京 100049
    3. 新疆民族语音语言信息处理实验室, 新疆 乌鲁木齐 830011
  • 收稿日期:2023-02-22 出版日期:2024-01-15 发布日期:2024-01-14
  • 通讯作者: 刘颖
  • 基金资助:
    新疆维吾尔自治区自然科学基金面上项目(2022D01A338); 天山创新团队计划项目(2022D14019); 新疆维吾尔自治区重点研发计划项目(2022B01005); 新疆维吾尔自治区重大科技专项(2020A02001)

Fabric-based Up-chain Preprocessing Mechanism for Mass Transaction Data

Ying LIU1,2,3,*(), Yupeng MA1,3, Fan ZHAO1,3, Yi WANG1,3, Tonghai JIANG1,3   

  1. 1. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, Xinjiang, China
  • Received:2023-02-22 Online:2024-01-15 Published:2024-01-14
  • Contact: Ying LIU

摘要:

Hyperledger Fabric是一种国内外广泛使用的联盟链框架,在基于Fabric技术的一些业务中具有协同组织众多、交易操作频繁、事务冲突增加等特点。Fabric采用的多版本并发控制技术能够在一定程度上解决部分交易冲突,提升系统并发性,但其机制不完善,会出现部分交易数据无法正常上链存储的问题。为了实现海量交易数据完整、高效、可信的上链存储,提出一种基于Fabric预言机的数据上链预处理机制。设计海量数据冲突预处理(MCPP)方法,通过检测、监听、延时提交、事务加锁、重排序缓存等方式实现主键冲突交易数据的完整上链。引入数据传输保障措施,在传输过程中利用非对称加密技术防止恶意节点伪造认证信息,确保交易数据链外处理前后的一致性。通过理论分析和实验结果表明,该机制可有效解决联盟链平台中海量交易数据上链时的并发冲突问题,当交易数据规模达到1 000和10 000时,MCPP的时效性比LMLS提高了38%和21.4%,且成功率接近100%,具有高效性和安全性,同时在无并发冲突情况下不影响Fabric系统性能。

关键词: 联盟链, Hyperledger Fabric平台, 预言机, 海量交易数据, 并发冲突, 数据传输

Abstract:

Hyperledger Fabric is an alliance chain framework widely adopted both domestically and internationally. It exhibits characteristics such as numerous participating organizations, frequent transaction operations, and increased transaction conflicts in certain businesses based on Fabric technology. The multi-version concurrency control technology used in Fabric can partially resolve transaction conflicts as well as enhance system concurrency. However, this mechanism is imperfect and certain transaction data cannot be properly stored on the chain. To achieve complete, efficient, and trustworthy up-chain storage of massive transaction data, a data preprocessing mechanism based on the Fabric oracle machine is proposed. The Massive Conflict Preprocessing(MCPP) method is designed to ensure the integrity of transaction data with primary key conflicts through techniques including detection, monitoring, delayed submission, transaction locking, and reordering caching. Data transmission protection measures are introduced to utilize asymmetric encryption technology during transmission, preventing malicious nodes from forging authentication information and ensuring consistency before and after off-chain processing of transaction data. Theoretical analysis and experimental results demonstrate that this mechanism can effectively address concurrent conflict issues regarding up-chain massive transaction data in alliance chain platforms. When the transaction data scales reach 1 000 and 10 000, the MCPP method achieves time efficiency improvements of 38% and 21.4%, respectively, compared with the LMLS algorithm, with a success rate close to 100%. Thus, the proposed method exhibits efficiency and security, and does not impact Fabric system performance when concurrent conflicts do not occur.

Key words: alliance chain, Hyperledger Fabric platform, oracle machine, massive transaction data, concurrency conflict, data transmission