[1] 谭思炜, 唐波, 张林森, 等. 跳频电磁引信干扰感知技术方案研究[J]. 系统工程与电子技术, 2022, 44(11):3330-3337. TAN S W, TANG B, ZHANG L S, et al. Interference sensing technical solution for frequency hopping electromagnetic fuze[J]. Systems Engineering and Electronics, 2022, 44(11):3330-3337. (in Chinese) [2] AHMED A, AHMED Q Z, ALMOGREN A, et al. Hybrid precoding aided fast frequency-hopping for millimeter-wave communication[J]. IEEE Access, 2021, 9:149596-149608. [3] 陈永龙, 谢瑛珂, 梁恒恒, 等. 光跳频激光雷达及其抗干扰性能研究[J]. 激光与光电子学进展, 2022, 59(13):1328003. CHEN Y L, XIE Y K, LIANG H H, et al. Investigation of light frequency-hopping LiDAR and its anti-interference performance[J]. Laser & Optoelectronics Progress, 2022, 59(13):1328003. (in Chinese) [4] 徐善顶, 曹喜望, 许广魁. 基于分圆法的一类素数平方周期跳频序列族[J]. 电子与信息学报, 2015, 37(10):2460-2465. XU S D, CAO X W, XU G K. Class of optimal frequency-hopping sequences set with the square of prime length based on cyclotomy[J]. Journal of Electronics & Information Technology, 2015, 37(10):2460-2465. (in Chinese) [5] FAN M Y. Frequency-hopping sequences with optimal average Hamming correlation and their applications in energy and spectrum harvesting technologies area[J]. IEEE Access, 2021, 9:1388-1393. [6] 徐善顶, 曹喜望, 许广魁. 一类周期为素数倍数的跳频序列族[J]. 电子学报, 2015, 43(10):1930-1935. XU S D, CAO X W, XU G K. A class of frequency-hopping sequences set with a multiple of prime number length[J]. Acta Electronica Sinica, 2015, 43(10):1930-1935. (in Chinese) [7] LIU H Y, CHEN W D, YANG Y X, et al. Chinese remainder theorem-based construction of optimal no-hit-zone frequency sequence set with wide gap[J]. Electronics Letters, 2022, 58(15):579-581. [8] 李胜男, 李永贵, 牛英滔, 等. 动态频谱抗干扰系统中动态宽间隔跳频序列研究[J]. 计算机工程, 2018, 44(2):147-150, 162. LI S N, LI Y G, NIU Y T, et al. Research of dynamic wide-gap frequency hopping sequences in dynamic spectrum anti-jamming system[J]. Computer Engineering, 2018, 44(2):147-150, 162. (in Chinese) [9] XU S D. Optimal frequency-hopping sequences based on the decimated m-sequences[J]. Cryptography and Communications, 2022, 14(5):983-998. [10] AL-MOLIKI Y M, ALRESHEEDI M T, AL-HARTHI Y. Improving availability and confidentiality via hyperchaotic baseband frequency hopping based on optical OFDM in VLC networks[J]. IEEE Access, 2020, 8:125013-125028. [11] 王潮, 霍振坤, 刘鹏程, 等. 基于改进祖冲之算法的安全跳频通信系统[J]. 清华大学学报(自然科学版), 2019, 59(2):154-161. WANG C, HUO Z K, LIU P C, et al. Security frequency hopping communication system based on an improved ZUC algorithm[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(2):154-161. (in Chinese) [12] 刘鹏飞, 杜欣军. 基于加权反馈三维混沌系统的调制跳变通信[J]. 计算机工程, 2021, 47(3):183-189, 195. LIU P F, DU X J. Modulation hopping communication based on three-dimensional chaotic system with weighted feedback[J]. Computer Engineering, 2021, 47(3):183-189, 195. (in Chinese) [13] 黄琪, 杨宇晓, 江陈卓. 组合跳变随机平移宽间隔混沌跳频序列设计[J]. 电讯技术, 2022, 62(6):755-761. HUANG Q, YANG Y X, JIANG C Z. Design of combined-hopping-random-shift wide-gap chaotic frequency hopping sequences[J]. Telecommunication Engineering, 2022, 62(6):755-761. (in Chinese) [14] 赵知劲, 王安强, 尚俊娜, 等. 基于灰狼算法的抗干扰跳频序列设计[J]. 信号处理, 2021, 37(6):1046-1054. ZHAO Z J, WANG A Q, SHANG J N, et al. Design of anti-jamming frequency-hopping sequence based on grey wolf algorithm[J]. Journal of Signal Processing, 2021, 37(6):1046-1054. (in Chinese) [15] AHMADIANFAR I, HEIDARI A A, GANDOMI A H, et al. RUN beyond the metaphor:an efficient optimization algorithm based on Runge Kutta method[J]. Expert Systems with Applications, 2021, 181:115079. [16] 孙克辉, 贺少波, 尹林子, 等. 模糊熵算法在混沌序列复杂度分析中的应用[J]. 物理学报, 2012, 61(13):71-77. SUN K H, HE S B, YIN L Z, et al. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence[J]. Acta Physica Sinica, 2012, 61(13):71-77. (in Chinese) [17] 杨宇晓, 汪德鑫, 黄琪. 四维超混沌射频隐身跳频通信设计方法[J]. 宇航学报, 2020, 41(10):1341-1349. YANG Y X, WANG D X, HUANG Q. Design method of radio frequency stealth frequency hopping communications based on four-dimensional hyperchaotic system[J]. Journal of Astronautics, 2020, 41(10):1341-1349.(in Chinese) [18] ROSTAGHI M, AZAMI H. Dispersion entropy:a measure for time-series analysis[J]. IEEE Signal Processing Letters, 2016, 23(5):610-614. [19] 郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008, 18(5):148-153. GUO J Y, ZHANG Z B, SUN Q Y. Study and applications of analytic hierarchy process[J]. China Safety Science Journal, 2008, 18(5):148-153.(in Chinese) [20] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//Proceedings of CIMCA-IAWTIC'06. Washington D. C., USA:IEEE Press:695-701. [21] 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2):179-182. SHAN L, QIANG H, LI J, et al. Chaotic optimization algorithm based on Tent map[J]. Control and Decision, 2005, 20(2):179-182. (in Chinese) [22] HU G, DU B, LI H N, et al. Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation[J]. Mathematics and Computers in Simulation, 2022, 200:428-467. [23] YANG X, WANG R, ZHAO D, et al. An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems[J]. Expert Systems with Applications, 2023, 213:119041. [24] JI Y Z, SHI B B, LI Y Y. An evolutionary machine learning for multiple myeloma using Runge Kutta optimizer from multi characteristic indexes[J]. Computers in Biology and Medicine, 2022, 150:106189. [25] EL-SATTAR H A, KAMEL S, HASSAN M H, et al. Optimal sizing of an off-grid hybrid photovoltaic/biomass gasifier/battery system using a quantum model of Runge Kutta algorithm[J]. Energy Conversion and Management, 2022, 258:115539. [26] NASSEF A M, HOUSSEIN E H, HELMY B E D, et al. Optimal reconfiguration strategy based on modified Runge Kutta optimizer to mitigate partial shading condition in photovoltaic systems[J]. Energy Reports, 2022, 8:7242-7262. [27] LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming-correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1):90-94. |