[1] 王晓燕. 无人驾驶系统中屏蔽门和列车车门故障应对探讨[J]. 铁路通信信号工程技术, 2017, 14(1):66-68. WANG X Y. Discussion on troubleshooting of screen door and train door in driverless system[J]. Railway Signalling & Communication Engineering, 2017, 14(1):66-68.(in Chinese) [2] 刘伟铭,陈纲梅,李海玉,等. 地铁风险空间分析及异物检测系统技术要求[J]. 铁道标准设计, 2019, 63(10):168-176. LIU W M, CHEN G M, LI H Y, et al. Risk space analysis and technical requirements for foreign object detection system[J]. Railway Standard Design, 2019, 63(10):168-176.(in Chinese) [3] 王瑞峰,杨子河,孔维珍. 红外光幕在地铁屏蔽门障碍物探测中的研究[J]. 传感器与微系统, 2013, 32(3):25-28. WANG R F, YANG Z H, KONG W Z. Research on infrared light screen in obstacle detection of subway platform screen doors[J]. Transducer and Microsystem Technologies, 2013, 32(3):25-28.(in Chinese) [4] 凌人,连奇幸,何悦海,等. 基于激光扫描的地铁站台门与列车间隙异物检测研究[J]. 机车电传动, 2020(3):60-62. LING R, LIAN Q X, HE Y H, et al. Study on foreign objects detection in the gap between platform edge door and train based on laser scanning[J]. Electric Drive for Locomotives, 2020(3):60-62.(in Chinese) [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2012:1097-1105. [6] 孔德龙,蒲凡. 基于深度残差神经网络的地铁站台门与列车门间异物自动检测方法研究[J]. 城市轨道交通研究, 2021, 24(12):66-70. KONG D L, PU F. Research on automatic detection method of foreign objects between platform screen door and train door based on deep residual neural network[J]. Urban Mass Transit, 2021, 24(12):66-70.(in Chinese) [7] ZHENG Z X, LIU W M, LIU R K, et al. Anomaly detection of metro station tracks based on sequential updatable anomaly detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11):7677-7691. [8] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].[2023-02-01]. https://arxiv.org/abs/2010.11929v1. [9] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2016:21-37. [10] GE Z, LIU S, WANG F, et al. YOLOX:exceeding YOLO series in 2021[EB/OL].[2023-02-01]. https://www.bilibili.com/read/cv15759865/. [11] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020, 42(2):318-327. [12] FENG C J, ZHONG Y J, GAO Y, et al. TOOD:task-aligned one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2021:3490-3499. [13] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [14] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2017:2980-2988. [15] CAI Z W, VASCONCELOS N. Cascade R-CNN:high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5):1483-1498. [16] SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN:end-to-end object detection with learnable proposals[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:14449-14458. [17] REDON J, FARHADI A, YOLOv3:an incremental improvement[EB/OL].[2023-02-01]. https://pjreddie.com/media/files/papers/YOLOv3.pdf. [18] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet:an IoU-aware dense object detector[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:8514-8523. [19] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of ECCV 2020. Berlin, Germany:Springer, 2020:213-229. [20] LIU Z, LIN Y, CAO Y, et al. Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:9992-10002. [21] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of International Conference on Machine Learning. New York, USA:ACM Press, 2021:10347-10357. [22] WU H P, XIAO B, CODELLA N, et al. CvT:introducing convolutions to vision transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2021:22-31. [23] ZHU X Z, SU W J, LU L W, et al. Deformable DETR:deformable transformers for end-to-end object detection[C]//Proceedings of International Conference on Learning Representations. New York, USA:ACM Press, 2021:1-16. [24] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2021:548-558. [25] WU Y H, LIU Y, ZHAN X, et al. P2T:pyramid pooling transformer for scene understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11):12760-12771. [26] 刘伟铭,温俊锐,郑仲星,等. 适用于地铁异物前景检测的神经网络——DifferentNet[J]. 华南理工大学学报(自然科学版), 2021, 49(10):11-21, 40. LIU W M, WEN J R, ZHENG Z X, et al. DifferentNet:neural network for foreign objects foreground detection in metro[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(10):11-21,40. (in Chinese) [27] LIU R K, LIU W M, LI H Y, et al. Metro anomaly detection based on light strip inductive key frame extraction and MAGAN network[J]. IEEE Transactions on Instrumentation Measurement, 2022, 71:5000214. [28] DAI Y, LIU W M, WANG H, et al. YOLO-former:marrying YOLO and transformer for foreign object detection[J]. IEEE Transactions on Instrumentation Measurement, 2022, 71:5026114. [29] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:2117-2125. [30] HOWARD A G, ZHU M, CHEN B, et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2023-02-01]. https://arxiv.org/abs/1804.02767. [31] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:770-778. [32] BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL].[2023-02-01]. https://arxiv.org/abs/1607.06450. [33] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of ECCV 2014. Berlin, Germany:Springer, 2014:740-755. [34] CHEN K, WANG J, PANG J, et al. MMDetection:open MMLab detection toolbox and benchmark[EB/OL].[2023-02-01]. https://arxiv.org/abs/1906.07155. [35] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2022:11976-11986. |