[1] GUO Y B, MATUSZEWSKI B J.Polyp segmentation with fully convolutional deep dilation neural network[C]//Proceedings of Annual Conference on Medical Image Understanding and Analysis.Berlin, Germany:Springer, 2020:377-388. [2] VEMURI A S.Survey of computer vision and machine learning in gastrointestinal endoscopy[EB/OL].[2021-08-25].https://arxiv.org/abs/1904.13307. [3] PATEL R, PATEL S.A comprehensive study of applying convolutional neural network for computer vision[J].International Journal of Advanced Science and Technology, 2020, 29(6):2161-2174. [4] 李煌, 王晓莉, 项欣光.基于文本三区域分割的场景文本检测方法[J].计算机科学, 2020, 47(11):142-147. LI H, WANG X L, XIANG X G.Scene text detection based on triple segmentation[J].Computer Science, 2020, 47(11):142-147.(in Chinese) [5] SAFAROV S, WHANGBO T K.A-DenseUNet:adaptive densely connected UNet for polyp segmentation in colonoscopy images with atrous convolution[J].Sensors, 2021, 21(4):1441. [6] RONNEBERGER O, FISCHER P, THOMAS B.U-Net:convolutional networks for biomedical image segmentation[EB/OL].[2021-08-25].https://arxiv.org/pdf/1505.04597.pdf. [7] WEI J, HU Y W, ZHANG R M, et al.Shallow attention network for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2021:699-708. [8] 刘佳伟, 刘巧红, 李晓欧, 等.一种改进的双U型网络的结肠息肉分割方法[J].光学学报, 2021, 41(18):72-80. LIU J W, LIU Q H, LI X O, et al.Improved colonic polyp segmentation method based on double U-shaped network[J].Acta Optica Sinica, 2021, 41(18):72-80.(in Chinese) [9] JHA D, RIEGLER M A, JOHANSEN D, et al.DoubleU-net:a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 33rd International Symposium on Computer-Based Medical Systems.Washington D.C., USA:IEEE Press, 2020:558-564. [10] 王亚刚, 郗怡媛, 潘晓英.改进DeepLabv3+网络的肠道息肉分割法[J].计算机科学与探索, 2020, 14(7):1243-1250. WANG Y G, XI Y Y, PAN X Y.Method for intestinal polyp segmentation by improving DeepLabv3+ network[J].Journal of Frontiers of Computer Science and Technology, 2020, 14(7):1243-1250.(in Chinese) [11] POORNESHWARAN J M, SANTHOSH KUMAR S, RAM K, et al.Polyp segmentation using generative adversarial network[C]//Proceedings of the 41st Annual International Conference of Engineering in Medicine and Biology Society.Washington D.C., USA:IEEE Press, 2019:7201-7204. [12] WANG Q L, WU B G, ZHU P F, et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539. [13] GUO M H, LIU Z N, MU T J, et al.Beyond self-attention:external attention using two linear layers for visual tasks[EB/OL].[2021-08-25].https://arxiv.org/abs/2105.02358v2. [14] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [15] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [16] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:5998-6008. [17] GLOROT X, BORDES A, BENGIO Y.Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.New York, USA:[s.n.], 2011:315-323. [18] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al.Learning deep features for discriminative localization[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2921-2929. [19] ZHANG Z L, ZHANG X Y, PENG C, et al.ExFuse:enhancing feature fusion for semantic segmentation[EB/OL].[2021-08-25].https://arxiv.org/pdf/1804.03821.pdf. [20] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [21] HAN X.Automatic liver lesion segmentation using a deep convolutional neural network method[EB/OL].[2021-08-25].https://arxiv.org/pdf/1704.07239.pdf. [22] ALOM M Z, YAKOPCIC C, TAHA T M, et al.Nuclei segmentation with recurrent residual convolutional neural networks based U-net(R2U-Net)[C]//Proceedings of National Aerospace and Electronics Conference.Washington D.C., USA:IEEE Press, 2018:228-233. [23] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al.UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis.Berlin, Germany:Springer, 2018:3-11. [24] HUANG H M, LIN L F, TONG R F, et al.UNet 3+:a full-scale connected UNet for medical image segmentation[C]//Proceedings of International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2020:1055-1059. [25] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:833-851. [26] POZDEEV A A, OBUKHOVA N A, MOTYKO A A.Automatic analysis of endoscopic images for polyps detection and segmentation[C]//Proceedings of Conference of Russian Young Researchers in Electrical and Electronic Engineering.Washington D.C., USA:IEEE Press, 2019:1216-1220. [27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16x16 words:Transformers for image recognition at scale[C]//Proceedings of International Conference on Learning Representations.San Diego, USA:[s.n.], 2021:1-9. |