[1] 陈益民, 周垂一.中国水利水电地下工程数据统计(截至2016年底)[J].隧道建设, 2017, 37(6):778-779. CHEN Y M, ZHOU C Y.Statistics of China's water conservancy and hydropower underground engineering data(as of the end of 2016)[J].Tunnel Construction, 2017, 37(6):778-779.(in Chinese) [2] YANG J, LI S B, WANG Z, et al.Using deep learning to detect defects in manufacturing:a comprehensive survey and current challenges[J].Materials, 2020, 13(24):5755-5765. [3] PRASANNA P, DANA K J, GUCUNSKI N, et al.Automated crack detection on concrete bridges[J].IEEE Transactions on Automation Science and Engineering, 2016, 13(2):591-599. [4] LEE S Y, TAMA B A, MOON S J, et al.Steel surface defect diagnostics using deep convolutional neural network and class activation map[J].Applied Sciences, 2019, 9(24):5449-5454. [5] 林封笑, 陈华杰, 姚勤炜, 等.基于混合结构卷积神经网络的目标快速检测算法[J].计算机工程, 2018, 44(12):222-227. LIN F X, CHEN H J, YAO Q W, et al.Target fast detection algorithm based on hybrid structure convolutional neural network[J].Computer Engineering, 2018, 44(12):222-227.(in Chinese) [6] 傅博, 王瑞子, 王丽妍, 等.基于深度卷积神经网络的水下偏色图像增强方法[J].吉林大学学报(理学版), 2021, 59(4):891-899. FU B, WANG R Z, WANG L Y, et al.Enhancement method of underwater color cast image based on deep convolutional neural network[J].Journal of Jilin University (Science Edition), 2021, 59(4):891-899.(in Chinese) [7] 孙朝云, 马志丹, 李伟, 等.基于深度卷积神经网络融合模型的路面裂缝识别方法[J].长安大学学报(自然科学版), 2020, 40(4):1-13. SUN Z Y, MA Z D, LI W, et al.Pavement crack identification method based on deep convolutional neural network fusion model[J].Journal of Chang'an University (Natural Science Edition), 2020, 40(4):1-13.(in Chinese) [8] CHOI W, CHA Y J.SDDNet:real-time crack segmentation[J].IEEE Transactions on Industrial Electronics, 2020, 67(9):8016-8025. [9] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-09-01].https://arxiv.org/abs/1706.03762. [10] WANG Q, LI B, XIAO T, et al.Learning deep transformer models for machine translation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:32-45. [11] DAI Z H, YANG Z L, YANG Y M, et al.Transformer-XL:attentive language models beyond a fixed-length context[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:55-62. [12] CHEN N X, WATANABE S, VILLALBA J, et al.Non-autoregressive transformer for speech recognition[J].IEEE Signal Processing Letters, 2021, 28:121-125. [13] BELLO I, ZOPH B, LE Q, et al.Attention augmented convolutional networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:3285-3294. [14] WANG Q, LIU S T, CHANUSSOT J, et al.Scene classification with recurrent attention of VHR remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):1155-1167. [15] RAMACHANDRAN P, N PARMAR, VASWANI A, et al.Stand-alone self-attention in vision models[EB/OL].[2021-08-01].https://www.xueshufan.com/publication/2949718784. [16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:transformers for image recognition at scale[EB/OL].[2021-08-01].https://www.xueshufan.com/publication/3119786062. [17] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [18] FENG C C, ZHANG H, WANG H R, et al.Automatic pixel-level crack detection on dam surface using deep convolutional network[J].Sensors, 2020, 20(7):2069-2074. [19] WANG H R, WANG S, FENG C C, et al.Diversion tunnel defects inspection and identification using an automated robotic system[EB/OL].[2021-08-01].https://s3-us-west-2.amazonaws.com/ieeeshutpages/xplore/xplore-ie-notice.html. [20] YUN S, HAN D, CHUN S, et al.CutMix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6022-6031. [21] SARI Y, PRAKOSO P B, BASKARA A R.Road crack detection using support vector machine (SVM) and OTSU algorithm[C]//Proceedings of the 6th International Conference on Electric Vehicular Technology.Washington D.C., USA:IEEE Press, 2019:349-354. [22] KONOVALENKO I, MARUSCHAK P, BREZINOVÁ J, et al.Steel surface defect classification using deep residual neural network[J].Metals, 2020, 10(6):846-853. [23] HOWARD A, SANDLER M, CHEN B, et al.Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1314-1324. |