[1] LIU S M, CHEN J H. A multi-label classification based approach for sentiment classification[J]. Expert Systems with Applications, 2015, 42(3):1083-1093. [2] TURNBULL D, BARRINGTON L, TORRES D, et al. Semantic annotation and retrieval of music and sound effects[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(2):467-476. [3] CHEN Z H, REN J T. Multi-label text classification with latent word-wise label information[J]. Applied Intelligence, 2021, 51(2):966-979. [4] BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771. [5] QI G J, HUA X S, RUI Y, et al. Correlative multi-label video annotation[C]//Proceedings of the 15th ACM International Conference on Multimedia. New York, USA:ACM Press, 2007:17-26. [6] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [7] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Mining multi-label data[M].Berlin, Germany:Springer, 2009:667-685. [8] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-labelsets for multilabel classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7):1079-1089. [9] ELISSEEFF A, WESTON J. A kernel method for multi-label classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2001:681-687. [10] ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1338-1351. [11] ZHANG M L, ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [12] FÜRNKRANZ J, HÜLLERMEIER E, MENCÍA E L, et al. Multilabel classification via calibrated label ranking[J]. Machine Language, 2008, 73(2):133-153. [13] HUANG J, LI G R, WANG S H, et al. Multi-label classification by exploiting local positive and negative pairwise label correlation[J]. Neurocomputing, 2017, 257:164-174. [14] 亢浏越, 黄睿, 孙广玲. 基于类属特征的多标签流形学习分类方法[J]. 上海大学学报(自然科学版), 2021, 27(3):525-534. KANG L Y, HUANG R, SUN G L. Label-specific feature-based multi-label manifold learning[J]. Journal of Shanghai University (Natural Science Edition), 2021, 27(3):525-534. (in Chinese) [15] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Language, 2011, 85(3):333-359. [16] SUN K W, LEE C H, WANG J. Multilabel classification via co-evolutionary multilabel hypernetwork[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9):2438-2451. [17] XU M, JIN R, ZHOU Z H. Speedup matrix completion with side information:application to multi-label learning[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:2301-2309. [18] TAN Q Y, YU G X, DOMENICONI C, et al. Multi-view weak-label Learning based on Matrix Completion[C]//Proceedings of 2018 SIAM International Conference on Data Mining. Philadelphia, USA:Society for Industrial and Applied Mathematics, 2018:450-458. [19] ZHAO F P, GUO Y H. Semi-supervised multi-label learning with incomplete labels[C]//Proceedings of the 24th International Conference on Artificial Intelligence. New York, USA:ACM Press, 2015:4062-4068. [20] MA Z C, CHEN S C. Expand globally, shrink locally:discriminant multi-label learning with missing labels[J]. Pattern Recognition, 2021, 111:107675. [21] HAO X Y, HUANG J, QIN F, et al. Multi-label learning with missing features and labels and its application to text categorization[J]. Intelligent Systems with Applications, 2022, 14:200086. [22] ZHANG L L, CHENG Y S, WANG Y B, et al. Feature-label dual-mapping for missing label-specific features learning[J]. Soft Computing, 2021, 25(14):9307-9323. [23] CHENG Z W, ZENG Z W. Joint label-specific features and label correlation for multi-label learning with missing label[J]. Applied Intelligence, 2020, 50(11):4029-4049. [24] KUMAR S, RASTOGI R. Low rank label subspace transformation for multi-label learning with missing labels[J]. Information Sciences, 2022, 596:53-72. [25] TAN A H, JI X W, LIANG J Y, et al. Weak multi-label learning with missing labels via instance granular discrimination[J]. Information Sciences, 2022, 594:200-216. [26] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA:MIT Press, 2002:585-592. [27] BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11):2419-2434. [28] GIBAJA E, VENTURA S. A tutorial on multilabel learning[J]. ACM Computing Surveys, 47(3):52. [29] HUANG J, LI G R, HUANG Q M, et al. Learning label-specific features and class-dependent labels for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12):3309-3323. [30] ZHU Y, KWOK J T, ZHOU Z H. Multi-label learning with global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6):1081-1094. [31] HUANG J, QIN F, ZHENG X, et al. Improving multi-label classification with missing labels by learning label-specific features[J]. Information Sciences, 2019, 492:124-146. [32] EMIAR J, SCHUURMANS D. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1):1-30. |