[1] BERMINGHAM M L, PONG-WONG R, SPILIOPOULOU A, et al.Application of high-dimensional feature selection:evaluation for genomic prediction in man[J].Scientific Reports, 2015, 5:10312. [2] FRANKLIN J.The elements of statistical learning:data mining, inference and prediction[J].The Mathematical Intelligencer, 2005, 27(2):83-85. [3] SUN X, LIU Y H, LI J, et al.Using cooperative game theory to optimize the feature selection problem[J].Neurocomputing, 2012, 97:86-93. [4] KONG X N, YU P S.gMLC:a multi-label feature selection framework for graph classification[J].Knowledge and Information Systems, 2012, 31(2):281-305. [5] ZHANG R, NIE F P, LI X L, et al.Feature selection with multi-view data:a survey[J].Information Fusion, 2019, 50:158-167. [6] LI Q, XIE B, YOU J, et al.Correlated logistic model with elastic net regularization for multilabel image classification[J].IEEE Transactions on Image Processing, 2016, 25(8):3801-3813. [7] SATO T, TAKANO Y, MIYASHIRO R, et al.Feature subset selection for logistic regression via mixed integer optimization[J].Computational Optimization and Applications, 2016, 64(3):865-880. [8] YANG Z Y, LIANG Y, ZHANG H, et al.Robust sparse logistic regression with the Lq(0< q < 1) regularization for feature selection using gene expression data[J].IEEE Access, 2018, 6:68586-68595. [9] SHI J B, MALIK J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [10] ROWEIS S T, SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290(5500):2323-2326. [11] KANG Z, PENG C, CHENG Q, et al.Structured graph learning for clustering and semi-supervised classification[J].Pattern Recognition, 2021, 110:107627. [12] KANG Z, PAN H Q, HOI S C H, et al.Robust graph learning from noisy data[J].IEEE Transactions on Cybernetics, 2020, 50(5):1833-1843. [13] 周婉莹, 马盈仓, 郑毅, 等.稀疏回归和流形学习的无监督特征选择算法[J].计算机应用研究, 2020, 37(9):2634-2639. ZHOU W Y, MA Y C, ZHENG Y, et al.Unsupervised feature selection algorithm based on sparse regression and manifold learning[J].Application Research of Computers, 2020, 37(9):2634-2639.(in Chinese) [14] 黄天意, 祝峰.基于流形学习的代价敏感特征选择[J].山东大学学报(理学版), 2017, 52(3):91-96. HUANG T Y, ZHU F.Cost-sensitive feature selection via manifold learning[J].Journal of Shandong University(Natural Science), 2017, 52(3):91-96.(in Chinese) [15] TANG B G, ZHANG L.Local preserving logistic I-Relief for semi-supervised feature selection[J].Neurocomputing, 2020, 399:48-64. [16] LIU H W, ZHANG S C, WU X D.MLSLR:multilabel learning via sparse logistic regression[J].Information Sciences, 2014, 281:310-320. [17] GU Q Q, ZHOU J.Co-clustering on manifolds[C]//Proceedings of 2009 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2009:359-368. [18] BELKIN M, NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic.New York, USA:ACM Press, 2001:585-591. [19] NIE F P, HUANG H, CAI X, et al.Efficient and robust feature selection via joint L2, 1-norms minimization[EB/OL].[2020-11-05].https://blog.csdn.net/taylent/article/details/105352427. [20] HE R, TAN T N, WANG L, et al.L2, 1 regularized correntropy for robust feature selection[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:2504-2511. [21] LEE J, KIM D W.SCLS:multi-label feature selection based on scalable criterion for large label set[J].Pattern Recognition, 2017, 66:342-352. [22] LIN Y J, HU Q H, LIU J H, et al.Multi-label feature selection based on max-dependency and Min-redundancy[J].Neurocomputing, 2015, 168:92-103. [23] LEE J, KIM D W.Feature selection for multi-label classification using multivariate mutual information[J].Pattern Recognition Letters, 2013, 34(3):349-357. [24] LEE J, KIM D W.Fast multi-label feature selection based on information-theoretic feature ranking[J].Pattern Recognition, 2015, 48(9):2761-2771. [25] 陈红, 杨小飞, 万青, 等.基于相关熵和流形学习的多标签特征选择算法[J].山东大学学报(工学版), 2018, 48(6):27-36. CHEN H, YANG X F, WAN Q, et al.Multi-label feature selection algorithm based on correntropy and manifold learning[J].Journal of Shandong University(Engineering Science), 2018, 48(6):27-36.(in Chinese) [26] ZHANG M L, ZHOU Z H.ML-KNN:a lazy learning approach to multi-label learning[J].Pattern Recognition, 2007, 40(7):2038-2048. [27] DOUGHERTY J, KOHAVI R, SAHAMI M.Supervised and unsupervised discretization of continuous features[C]//Proceedings of the 12th International Conference on Machine Learning.Berlin, Germany:Springer, 1995:194-202. [28] DEMIAR J, SCHUURMANS D.Statistical comparisons of classifiers over multiple data sets[J].Journal of Machine Learning Research, 2006, 7(1):1-30. |