[1] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for MR image reconstruction[C]//Proceedings of International Conference on Information Processing in Medical Imaging. Berlin, Germany:Springer, 2017:647-658. [2] VARLEY J, DECHANT C, RICHARDSON A, et al. Shape completion enabled robotic grasping[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. New York, USA:ACM, 2017:2442-2447. [3] RUSU R B, MARTON Z C, BLODOW N, et al. Towards 3D point cloud based object maps for household environments[J]. Robotics and Autonomous Systems, 2008, 56(11):927-941. [4] HUANG Z, XU Y L, LASSNER C, et al. ARCH:animatable reconstruction of clothed humans[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA:IEEE Press, 2020:3093-3102. [5] ZHU F, LI S B, GUO X H. A 3D reconstruction method based on RGB-D camera[J]. Journal of Physics, 2021, 18 (4):042048. [6] 毛方儒, 王磊. 三维激光扫描测量技术[J]. 宇航计测技术, 2005, 25(2):1-6. MAO F R, WANG L. Measurement technology of 3D laser scanning[J]. Journal of Astronautic Metrology and Measurement, 2005, 25(2):1-6.(in Chinese) [7] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge, UK:Cambridge University Press,2003. [8] 赵碧霞, 张华, 王姮, 等. 基于Bayes理论的散斑三维重建方法[J]. 计算机工程, 2017, 43(12):211-215. ZHAO B X, ZHANG H, WANG H, et al. 3D reconstruction method of speckle based on Bayes theory[J]. Computer Engineering, 2017, 43(12):211-215.(in Chinese) [9] 陈坤, 刘新国. 基于光线的全局优化多视图三维重建方法[J]. 计算机工程, 2013, 39(11):235-239. CHEN K, LIU X G. Global optimized multi-view 3D reconstruction method based on rays[J]. Computer Engineering, 2013, 39(11):235-239.(in Chinese) [10] ZHANG X M, ZHANG Z T, ZHANG C K, et al. Learning to reconstruct shapes from unseen classes[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York,USA:ACM Press, 2018:2263-2274. [11] KANAZAWA A, BLACK M J, JACOBS D W, et al. End-to-end recovery of human shape and pose[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE Press, 2018:7122-7131. [12] KONG C, LIN C H, LUCEY S. Using locally corresponding CAD models for dense 3D reconstructions from a single image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA:IEEE Press, 2017:4857-4865. [13] LORENSEN W E, CLINE H E. Marching Cubes:a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987, 21(4):163-169. [14] MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks:learning 3D reconstruction in function space[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA:IEEE Press, 2019:4460-4470. [15] PENG S Y, NIEMEYER M, MESCHEDER L, et al. Convolutional occupancy networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:523-540. [16] LIONAR S, EMTSEV D, SVILARKOVIC D, et al. Dynamic plane convolutional occupancy networks[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA:IEEE Press, 2021:1829-1838. [17] TANG J P, LEI J B, XU D, et al. SA-ConvONet:sign-agnostic optimization of convolutional occupancy networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2021:6504-6513. [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2016:770-778. [19] CHARLES R Q, HAO S, MO K C, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA:IEEE Press, 2017:652-660. [20] DE VRIES H, STRUB F, MARY J, et al. Modulating early visual processing by language[C]//Proceedings of NIPS'17. Cambridge,USA:MIT Press, 2017:6594-6604. [21] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. New York,USA:ACM Press, 2010:807-814. [22] GARLAND M, HECKBERT P S. Simplifying surfaces with color and texture using quadric error metrics[C]//Proceedings Visualization'98. Washington D. C.,USA:IEEE Press, 1998:263-269. [23] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[M]. Berlin, Germany:Springer, 2015. [24] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2016:424-432. [25] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF:representing scenes as neural radiance fields for view synthesis[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:405-421. [26] ZHU H M, CAO Y, JIN H, et al. Deep Fashion3D:a dataset and benchmark for 3D garment reconstruction from single images[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:512-530. [27] BERNARDINI F, MITTLEMAN J, RUSHMEIER H, et al. The ball-pivoting algorithm for surface reconstruction[J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4):349-359. [28] STUTZ D, GEIGER A. Learning 3D shape completion from laser scan data with weak supervision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2018:1955-1964. [29] LIN H, ZHENG X, LI L, et al. Meta architecure for point cloud analysis[EB/OL].[2023-04-24]. https://arxiv.org/abs/2211.14462. [30] QIAN G C, HAMMOUD H, LI G H, et al. ASSANet:an anisotropic separable set abstraction for efficient point cloud representation learning[EB/OL].[2023-04-24]. https://arxiv.org/abs/2110.10538v1. [31] ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2021:16259-16268. [32] QIAN G, LI Y, PENG H, et al. Pointnext:revisiting pointnet++ with improved training and scaling strategies[C]//Proceedings of NIPS'22. Cambridge,USA:MIT Press, 2022:23192-23204. [33] GUO M H, CAI J X, LIU Z N, et al. PCT:point cloud transformer[J]. Computational Visual Media, 2021, 7(2):187-199. [34] BOULCH A, MARLET R. POCO:point convolution for surface reconstruction[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2022:6302-6314. [35] ABEWYICKRAMA T, CHEEMA M, TANIAR D. KNN on road networks:a journey in experimentation and in-memory implementation[EB/OL].[2023-04-24]. https://arxiv.org/abs/1601.01549. [36] QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York,USA:ACM Press, 2017:5105-5114. [37] KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction[C]//Proceedings of the 4th Symposium on Geometry Processing. New York,USA:ACM Press, 2006:61-70. |