作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (6): 358-366. doi: 10.19678/j.issn.1000-3428.0068127

• 开发研究与工程应用 • 上一篇    下一篇

基于改进PPYOLOE-R的信息码矫正研究

赵云涛1, 肖俊杰2, 李维刚2, 熊雅婷2   

  1. 1. 武汉科技大学冶金自动化与检测技术教育部工程研究中心, 湖北 武汉 430081;
    2. 武汉科技大学信息科学与工程学院, 湖北 武汉 430081
  • 收稿日期:2023-07-21 修回日期:2023-08-23 发布日期:2023-10-30
  • 通讯作者: 肖俊杰,E-mail:1632191437@qq.com E-mail:1632191437@qq.com
  • 基金资助:
    湖北省教育厅科学技术研究项目(B2020012)。

Research on Information Code Correction Based on Improved PPYOLOE-R

ZHAO Yuntao1, XIAO Junjie2, LI Weigang2, XIONG Yating2   

  1. 1. Engineering Research Center of Metallurgical Automation and Testing Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China;
    2. College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • Received:2023-07-21 Revised:2023-08-23 Published:2023-10-30

摘要: 信息码识别技术推动着社会的进步,使人们的生活更加便捷。由于受所处拍照环境影响,信息码识别效果有待提高,而且信息码角度倾斜也会影响解码正确率。以基于信息码的电力互感器误差实验接线判断为背景,提出一种基于改进PPYOLOE-R的信息码矫正算法。首先以PPYOLOE-R检测算法为基础,融合轻量级网络ESNet,在提升精度的同时降低模型参数量;其次引入动态卷积进一步加强特征提取,减少模型因下采样丢失信息,加强模型通道特征提取能力;最后为满足人工智能(AI)边缘设备上的实时性要求,采用模型融合技术将推理模型进行融合,保证在模型精度不变的情况下提升模型检测速度。为丰富数据集,采用两步旋转数据增强和Mosaic+Mixup数据增强方法,充分利用数据集中已有信息,提高模型学习能力。实验结果表明,改进后算法精度达到89.46%,较原模型提升了1.95%,检测照片速度从每张154 ms提升至每张50 ms。相较其他算法,改进算法具有体积小和速度快的优势,通过算法矫正后的信息码,可显著提高解码效率和正确率。

关键词: 信息码矫正, 人工智能边缘计算, PPYOLOE-R算法, 动态卷积, 模型融合

Abstract: Information-code recognition technology promotes societal progress and provides convenience. Owing to the effect of the photography environment, the information-code recognition effect must be improved, and the information-code angle tilt affects the decoding accuracy. Using information code-based power-transformer error test wiring judgment as the background, this paper proposes an information-code correction algorithm based on the improved PPYOLOE-R. First, based on the PPYOLOE-R detection algorithm, a lightweight network, ESNet, is integrated to improve accuracy and reduce the number of model parameters. Second, dynamic convolution is introduced to further enhance feature extraction, reduce information loss in the model due to subsampling, and enhance the feature-extraction capability of the model channel. Finally, to satisfy the real-time requirements of Artificial Intelligence(AI) edge devices, model fusion technology is applied to fuse the inference model to improve the model detection speed without changing the accuracy of the model. To enrich the dataset, two-step rotation data-enhancement and Mosaic + Mixup data-enhancement methods are used to fully utilize existing information in the dataset and improve the learning ability of the model. Experimental results show that the accuracy of the improved algorithm is 89.46%, which is 1.95% higher than that of the original model, and that the detection speed increases from 154 to 50 ms per photograph. Compared with other algorithms, the improved algorithm offers the advantages of small size and high speed, and the decoding efficiency and accuracy can be improved significantly using the corrected information code.

Key words: information code correction, Artificial Intelligence(AI) edge computing, PPYOLOE-R algorithm, dynamic convolution, model fusion

中图分类号: