[1] XU L C, KAMAT V R, MENASSA C C. Automatic extraction of 1D barcodes from video scans for drone-assisted inventory management in warehousing applications[J]. International Journal of Logistics Research and Applications, 2018, 21(3):243-258. [2] YUN I, KIM J. Vision-based 1D barcode localization method for scale and rotation invariant[C]//Proceedings of TENCON'17. Washington D. C.,USA:IEEE Press, 2017:2204-2208. [3] WANG Z H, CHEN A, LI J J, et al. 1D barcode region detection based on the Hough transform and support vector machine[M]. Berlin, Germany:Springer, 2016. [4] CHOU T H, HO C S, KUO Y F. QR code detection using convolutional neural networks[C]//Proceedings of 2015 International Conference on Advanced Robotics and Intelligent Systems. Washington D. C.,USA:IEEE Press, 2015:1-5. [5] ZHANG L, SUI Y, ZHU F, et al. Fast barcode detection method based on ThinYOLOv4[C]//Proceedings of the 5th International Conference on Cognitive Systems and Signal Processing. Berlin, Germany:Springer, 2021:41-55. [6] ZHANG J H, MIN X K, JIA J, et al. Fine localization and distortion resistant detection of multi-class barcode in complex environments[J]. Multimedia Tools and Applications, 2021, 80(11):16153-16172. [7] 易帆,李功燕,许绍云.基于多任务目标检测的条形码倾斜矫正算法研究[J].计算机应用与软件, 2019, 36(10):139-144. YI F, LI G Y, XU S Y. Barcode tilt correction algorithm based on multi-task object detection[J]. Computer Applications and Software, 2019, 36(10):139-144.(in Chinese) [8] WANG X, WANG G, DANG Q, et al. PP-YOLOE-R:an efficient anchor-free rotated object detector[EB/OL].[2023-06-10]. https://arxiv.org/abs/2211.02386. [9] XU S, WANG X, LU W, et al. PP-YOLOE:an evolved version of YOLO[EB/OL].[2023-06-10]. https://arxiv.org/abs/2203.16250. [10] 王程,刘元盛,刘圣杰.基于改进YOLOv4的小目标行人检测算法[J].计算机工程, 2023, 49(2):296-302, 313. WANG C, LIU Y S, LIU S J. Small-target pedestrian-detection algorithm based on improved YOLOv4[J]. Computer Engineering, 2023, 49(2):296-302, 313.(in Chinese) [11] 刘俊豪,王美林,谢兴,等.基于改进YOLOv5的皮革瑕疵检测算法[J].计算机工程, 2023, 49(8):240-249. LIU J H, WANG M L, XIE X, et al. Leather defect detection algorithm based on improved YOLOv5[J]. Computer Engineering, 2023, 49(8):240-249.(in Chinese) [12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2016:770-778. [13] DING X H, ZHANG X Y, MA N N, et al. RepVGG:making VGG-style ConvNets great again[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2021:13733-13742. [14] HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2020:1580-1589. [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2018:7132-7141. [16] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL].[2023-06-10]. https://arxiv.org/abs/2209.07947. [17] YANG B, BENDER G, LE Q V, et al. Condconv:conditionally parameterized convolutions for efficient inference[C]//Proceedings of NIPS'19. Cambridge, USA:MIT Press, 2019, 32. [18] ZHANG Y, ZHANG J, WANG Q, et al. Dynet:dynamic convolution for accelerating convolutional neural networks[EB/OL].[2023-06-10]. https://arxiv.org/abs/2004.10694.[JP] [19] VASU P K A, GABRIEL J, ZHU J, et al. MobileOne:an improved one millisecond mobile backbone[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C.,USA:IEEE Press, 2023:7907-7917. [20] WADEKAR S N, CHAURASIA A. Mobilevitv3:mobile-friendly vision transformer with simple and effective fusion of local, global and input features[EB/OL].[2023-06-10]. https://arxiv.org/abs/2209.15159. [21] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C.,USA:IEEE Press, 2019:1314-1324. [22] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany:Springer, 2018:122-138. [23] YU G, CHANG Q, LU W, et al. PP-PicoDet:a better real-time object detector on mobile devices[EB/OL].[2023-06-10]. https://arxiv.org/abs/2111.00902. [24] LI Z H, HOU B, WU Z T, et al. FCOSR:a simple anchor-free rotated detector for aerial object detection[EB/OL].[2023-06-10]. https://arxiv.org/abs/2111.10780. [25] HAN J M, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-11. |