1 |
陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述. 计算机工程, 2022, 48(11): 1- 13.
URL
|
|
CHEN L C, FU D Y. Survey on machine learning methods for small sample data. Computer Engineering, 2022, 48(11): 1- 13.
URL
|
2 |
姚乐. 面向大规模数据的工业过程分布式并行建模及应用[D]. 杭州: 浙江大学, 2019.
|
|
YAO L. Distributed parallel modeling and application for industrial processes with large-scale data[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
|
3 |
张景莲, 彭艳兵. 基于特征融合的恶意代码分类研究. 计算机工程, 2019, 45(8): 281-286, 295.
URL
|
|
ZHANG J L, PENG Y B. Research on malware code classification based on features fusion. Computer Engineering, 2019, 45(8): 281-286, 295.
URL
|
4 |
邹冲, 蔡敦波, 赵娜, 等. 基于SVM-LeNet模型融合的行人检测算法. 计算机工程, 2017, 43(5): 169- 173.
doi: 10.3969/j.issn.1000-3428.2017.05.027
|
|
ZOU C, CAI D B, ZHAO N, et al. Pedestrian detection algorithm based on SVM-LeNet model fusion. Computer Engineering, 2017, 43(5): 169- 173.
doi: 10.3969/j.issn.1000-3428.2017.05.027
|
5 |
王扬, 黄亚楼, 卢敏, 等. 直接优化性能指标的多排序模型融合方法. 计算机学报, 2014, 37(8): 1658- 1668.
URL
|
|
WANG Y, HUANG Y L, LU M, et al. Multiple rank aggregation based on directly optimizing performance measure. Chinese Journal of Computers, 2014, 37(8): 1658- 1668.
URL
|
6 |
陈强, 黄丹丹, 李彬, 等. 一种高度冲突证据混合分步合成算法. 计算机工程, 2015, 41(10): 302- 308.
doi: 10.3969/j.issn.1000-3428.2015.10.057
|
|
CHEN Q, HUANG D D, LI B, et al. A mixed step by step combination algorithm for highly conflict evidence. Computer Engineering, 2015, 41(10): 302- 308.
doi: 10.3969/j.issn.1000-3428.2015.10.057
|
7 |
周倩. 求解大规模机器学习问题的优化方法[D]. 贵阳: 贵州大学, 2018.
|
|
ZHOU Q. Optimization method for solving large-scale machine learning problems[D]. Guiyang: Guizhou University, 2018. (in Chinese)
|
8 |
王华军. 0/1损失支持向量机优化模型与算法[D]. 北京: 北京交通大学, 2022.
|
|
WANG H J. Optimization models and algorithms for 0/1 loss support vector machine[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese)
|
9 |
李莉, 任振康, 石可欣. 代价敏感的Boosting软件缺陷预测方法. 计算机工程, 2022, 48(3): 175- 180.
URL
|
|
LI L, REN Z K, SHI K X. Cost sensitive Boosting software defect prediction method. Computer Engineering, 2022, 48(3): 175- 180.
URL
|
10 |
李磊磊. 基于随机森林算法的IVF-ET治疗结局预测模型建立及预测特征分析研究[D]. 长春: 吉林大学, 2022.
|
|
LI L L. Research on the establishment of prediction models of IVF-ET treatment outcomes and analysis of prediction characteristics based on random forest algorithm[D]. Changchun: Jilin University, 2022. (in Chinese)
|
11 |
犹梦洁. 基于文本挖掘的煤矿安全风险识别与评价研究[D]. 北京: 中国矿业大学(北京), 2023.
|
|
YOU M J. Research on safety risk identification and assessment of coal mine based on text mining[D]. Beijing: China Universityof Mining & Technology(Beijing), 2023. (in Chinese)
|
12 |
王兆刚. 基于时序数据挖掘的煤矿安全趋势性知识发现研究[D]. 北京: 中国矿业大学(北京), 2020.
|
|
WANG Z G. Research on trend knowledge discovery of coal mine safety based on times series data mining[D]. Beijing: China University of Mining & Technology(Beijing), 2020. (in Chinese)
|
13 |
SIDORENKO A A, IVANOV V V, SIDORENKO S A. Numerical simulation of rock massif stress state at normal fault at underground longwall coal mining. International Journal of Civil Engineering and Technology, 2019, 10(1): 844- 851.
|
14 |
MAŁKOWSKI P, NIEDBALSKI Z, SOJKA W. The assessment of the optimal time window for prediction of seismic hazard for longwall coal mining: the case study. Acta Geophysica, 2021, 69(2): 691- 699.
doi: 10.1007/s11600-021-00541-5
|
15 |
ABIODUN O I, JANTAN A, OMOLARA A E, et al. State-of-the-art in artificial neural network applications: a survey. Heliyon, 2018, 4(11): e00938.
doi: 10.1016/j.heliyon.2018.e00938
|
16 |
周末, 金敏. 多算法多模型与在线第二次学习结合的短期电力负荷预测方法. 计算机应用, 2017, 37(11): 3317- 3322.
URL
|
|
ZHOU M, JIN M. Short-term power load forecasting method combining with multi-algorithm & multi-model and online second learning. Journal of Computer Applications, 2017, 37(11): 3317- 3322.
URL
|
17 |
徐晓健, 严新平, 盛晨兴, 等. 基于证据推理规则的船舶柴油机磨损类型辨识研究. 摩擦学学报, 2017, 37(6): 814- 822.
URL
|
|
XU X J, YAN X P, SHENG C X, et al. Identification on wear mode for marine diesel engine based on evidential reasoning rule. Tribology, 2017, 37(6): 814- 822.
URL
|
18 |
徐雪松, 舒俭. 多模型数据集的免疫鲁棒回归分析. 计算机应用, 2014, 34(8): 2285- 2290.
URL
|
|
XU X S, SHU J. Immune robust regression analysis for data set of multiple models. Journal of Computer Applications, 2014, 34(8): 2285- 2290.
URL
|
19 |
HASTIE T, ROSSET S, ZHU J, et al. Multi-class AdaBoost. Statistics and Its Interface, 2009, 2(3): 349- 360.
|
20 |
WANG Q, HE M C, YANG J, et al. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines. International Journal of Rock Mechanics and Mining Sciences, 2018, 110, 1- 8.
|
21 |
CHANG L L, ZHANG L M, FU C, et al. Transparent digital twin for output control using belief rule base. IEEE Transactions on Cybernetics, 2022, 52(10): 10364- 10378.
|
22 |
WANG Y, CONG J L, WANG P, et al. A data-fusion approach for speed estimation and location calibration of a metro train based on low-cost sensors in smartphones. IEEE Sensors Journal, 2019, 19(22): 10744- 10752.
|
23 |
王丽红. 煤矿开采技术与掘进支护技术探讨. 能源与节能, 2023,(8): 136- 138.
URL
|
|
WANG L H. Coal mining technology and excavation support technology. Energy and Energy Conservation, 2023,(8): 136- 138.
URL
|
24 |
OUCHEN S, STEINHART H, BENBOUZID M, et al. Robust DPC-SVM control strategy for shunt active power filter based on H∞ regulators. International Journal of Electrical Power & Energy Systems, 2020, 117, 105699.
|
25 |
LI D W, XIE Q, GONG X X, et al. Automatic defect detection of metro tunnel surfaces using a vision-based inspection system. Advanced Engineering Informatics, 2021, 47, 101206.
|
26 |
ONYEKWENA C C, XUE Q, LI Q, et al. Support vector machine regression to predict gas diffusion coefficient of biochar-amended soil. Applied Soft Computing, 2022, 127, 109345.
|
27 |
朱品光. 基于随机森林回归算法的堆石坝爆破块度预测研究[D]. 天津: 天津大学, 2019.
|
|
ZHU P G. Study on blasting fragmentation prediction of rock-fill dam based on random forest regression algorithm[D]. Tianjin: Tianjin University, 2019. (in Chinese)
|
28 |
雷维嘉, 刘玥岑. LDS多址接入系统中一种低复杂度的分组多用户检测算法. 中国科学: 信息科学, 2019, 49(6): 783- 798.
URL
|
|
LEI W J, LIU Y C. A low complexity grouping multi-user detection algorithm for the LDS multiple access system. Scientia Sinica (Informationis), 2019, 49(6): 783- 798.
URL
|
29 |
孟嘉慧. 多元LDPC码编译码算法复杂度优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
|
MENG J H. Research on complexity optimization of non-binary LDPC encoding and decoding algorithm[D]. Harbin: Harbin Engineering University, 2019. (in Chinese)
|