[1] GOHSHI S.Real-time super resolution algorithm for security cameras[C]//Proceedings of the 12th International Joint Conference on e-Business and Telecommunications.Washington D.C., USA:IEEE Press, 2015:92-97. [2] TAO H J, LU X B.Contour-based smoky vehicle detection from surveillance video for alarm systems[J].Signal, Image and Video Processing, 2019, 13(2):217-225. [3] ISAAC J S, KULKARNI R.Super resolution techniques for medical image processing[C]//Proceedings of International Conference on Technologies for Sustainable Development.Washington D.C., USA:IEEE Press, 2015:1-6. [4] ARÀNDIGA F.A nonlinear algorithm for monotone piecewise bicubic interpolation[J].Applied Mathematics and Computation, 2016, 272:100-113. [5] 戚曹, 朱桂斌, 唐鉴波, 等.基于稀疏表示的红外视频图像超分辨率算法[J].计算机工程, 2016, 42(3):278-282. QI C, ZHU G B, TANG J B, et al.Super-resolution algorithm of infrared video image based on sparse representation[J].Computer Engineering, 2016, 42(3):278-282.(in Chinese) [6] 王诗言, 曾茜, 周田, 等.基于注意力机制与特征融合的图像超分辨率重建[J].计算机工程, 2021, 47(3):269-275, 283. WANG S Y, ZENG X, ZHOU T, et al.Image super-resolution reconstruction based on attention mechanism and feature fusion[J].Computer Engineering, 2021, 47(3):269-275, 283.(in Chinese) [7] CHEN Y B, LIU S F, WANG X L.Learning continuous image representation with local implicit image function[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8624-8634. [8] DONG C, LOY C C, HE K M, et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [9] KIM J W, LEE J K, LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1646-1654. [10] KIM J W, LEE J K, LEE K M.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1637-1645. [11] TAI Y, YANG J, LIU X M.Image super-resolution via deep recursive residual network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3147-3155. [12] SHI W Z, CABALLERO J, HUSZÁR F, et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1874-1883. [13] LIM B, SON S, KIM H, et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1132-1140. [14] ZHANG Y L, LI K P, LI K, et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:294-310. [15] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [16] AHN N, KANG B, SOHN K A.Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision.New York, USA:ACM Press, 2018:252-268. [17] MUQEET A, HWANG J, YANG S B, et al.Ultra lightweight image super-resolution with multi-attention layers[EB/OL].[2022-03-01].https://arxiv.org/abs/2008.12912. [18] ZHAO H Y, KONG X T, HE J W, et al.Efficient image super-resolution using pixel attention[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:56-72. [19] LUO X, XIE Y, ZHANG Y, et al.LatticeNet:towards lightweight image super-resolution with lattice block[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany:Springer, 2020:272-289. [20] CHEN Y P, DAI X Y, LIU M C, et al.Dynamic convolution:attention over convolution kernels[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11027-11036. [21] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of British Machine Vision Conference.Berlin, Germany:Springer, 2012:135. [22] ZEYDE R, ELAD M, PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of International Conference on Curves and Surfaces.Berlin, Germany:Springer, 2012:711-730. [23] MARTIN D, FOWLKES C, TAL D, et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2001:416-423. [24] HUANG J B, SINGH A, AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:5197-5206. [25] LAI W S, HUANG J B, AHUJA N, et al.Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5835-5843. [26] TAI Y, YANG J, LIU X M, et al.MemNet:a persistent memory network for image restoration[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:4539-4547. [27] LIU J, ZHANG W J, TANG Y T, et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:2359-2368. |