作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (12): 196-202. doi: 10.19678/j.issn.1000-3428.0064098

• 图形图像处理 • 上一篇    下一篇

基于动态自适应层叠网络的轻量化图像超分辨率重建

张法正, 杨娟, 汪荣贵, 薛丽霞   

  1. 合肥工业大学 计算机与信息学院, 合肥 230009
  • 收稿日期:2022-03-04 修回日期:2022-06-06 发布日期:2022-05-03
  • 作者简介:张法正(1998—),男,硕士研究生,主研方向为深度学习、计算机视觉;杨娟,讲师、博士;汪荣贵,教授、博士;薛丽霞,副教授、博士。
  • 基金资助:
    国家自然科学基金(62106064);国家重点研发计划(2020YFC1512601)。

Lightweight Image Super-Resolution Reconstruction Based on Dynamic Adaptive Cascade Network

ZHANG Fazheng, YANG Juan, WANG Ronggui, XUE Lixia   

  1. School of Computer and Information, Hefei University of Technology, Hefei 230009, China
  • Received:2022-03-04 Revised:2022-06-06 Published:2022-05-03

摘要: 轻量化超分辨率网络对安防监控、实时人脸识别等领域具有重要意义。然而,现有超分辨率重建网络以牺牲内存和计算成本为代价提高重建效果,从而限制其在实际场景中的应用。提出基于动态自适应层叠网络的轻量化超分辨率重建网络。利用双路残差块中的深度可分离卷积提取低频特征,并引入像素注意力机制获取更丰富的细节特征,以减少参数量并增强网络的重建能力。将双路残差块中的一部分卷积参数作为动态卷积核的子卷积,并与动态自适应模块共享,利用可学习参数调节共享卷积的权重,增强网络的非线性映射关系,充分提取图像的纹理细节信息。实验结果表明,相比VDSR、CARN、PAN等网络,该网络重建得到的图像纹理更接近原始图像,其参数量仅为传统轻量化网络CARN的1/2,在放大因子为4的Set5数据集上峰值信噪比相比CARN提高0.16 dB。

关键词: 超分辨率重建, 轻量化网络, 动态自适应层叠网络, 动态卷积, 注意力机制, 深度学习

Abstract: Lightweight super-resolution network is of great importance in security monitoring, real-time face recognition, and other fields.However, the existing super-resolution reconstruction network improves the reconstruction effect at the expense of memory and computing cost, which limits its application in real-world scenarios.This study proposes a lightweight super-resolution reconstruction network based on the Dynamic Adaptive Cascade Network (DACN).The low frequency features are extracted by the depthwise separable convolution in the Dual Residual Block (DRB), and the pixel attention mechanism is introduced to obtain more detailed features to reduce the parameters quanitity and to enhance the network reconstruction ability.A part of the convolution parameters in the DRB is used as the sub-convolution of the dynamic convolution kernel and is shared with the Dynamic Adaptive Block(DAB).The weight of the shared convolution is adjusted by the learnable parameters to enhance the non-linear mapping relationship of the network and fully extract the texture details of the image.The experimental results show that compared with VDSR, CARN, PAN, and other networks, the reconstructed image texture of the proposed network is closer to the original image, and its parameter quanitity is only 1/2 of the traditional lightweight network CARN.The peak signal to noise ratio of Set5 dataset with an amplification factor of 4 is 0.16 dB higher than that of CARN.

Key words: super-resolution reconstruction, lightweight network, Dynamic Adaptive Cascade Network(DACN), dynamic convolution, attention mechanism, Deep Learning(DL)

中图分类号: