1 |
YANG C H, WU J P, LEE F Y, et al. Detection and mitigation of SYN flooding attacks through SYN/ACK packets and black/white lists. Sensors, 2023, 23 (8): 3817.
doi: 10.3390/s23083817
|
2 |
ZHANG H, LI Y D, LV Z H, et al. A real-time and ubiquitous network attack detection based on deep belief network and support vector machine. CAA Journal of Automatica Sinica, 2020, 7 (3): 790- 799.
doi: 10.1109/JAS.2020.1003099
|
3 |
周桥, 翟江涛, 荚东升, 等. 基于卷积门控循环神经网络的Web攻击检测方法. 广西师范大学学报(自然科学版), 2023, 41 (6): 51- 61.
URL
|
|
ZHOU Q, ZHAI J T, GU D S, et al. Web attack detection method based on convolutional gated recurrent neural network. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41 (6): 51- 61.
URL
|
4 |
ZHANG C, GUO R Z, MA X Y, et al. W-TextCNN: a TextCNN model with weighted word embeddings for Chinese address pattern classification. Computers, Environment and Urban Systems, 2022, 95, 101819.
doi: 10.1016/j.compenvurbsys.2022.101819
|
5 |
XU G X, ZHANG Z X, ZHANG T, et al. Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning. Knowledge-Based Systems, 2022, 245, 108586.
|
6 |
|
7 |
YE Z W, SUN Y H, SUN S, et al. Research on network intrusion detection based on support vector machine optimized with grasshopper optimization algorithm[C]//Proceedings of the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications(IDAACS). Washington D. C., USA: IEEE Press, 2019: 378-383.
|
8 |
DEVAN P, KHARE N. An efficient XGBoost—DNN-based classification model for network intrusion detection system. Neural Computing and Applications, 2020, 32 (16): 12499- 12514.
doi: 10.1007/s00521-020-04708-x
|
9 |
WEN L B. Cloud computing intrusion detection technology based on BP-NN. Wireless Personal Communications, 2022, 126 (3): 1917- 1934.
doi: 10.1007/s11277-021-08569-y
|
10 |
GAUTAM S, HENRY A, ZUHAIR M, et al. A composite approach of intrusion detection systems: hybrid RNN and correlation-based feature optimization. Electronics, 2022, 11 (21): 3529.
doi: 10.3390/electronics11213529
|
11 |
许丹丹, 徐阳, 张思聪, 等. 基于DCNN-GRU模型的XSS攻击检测方法. 计算机应用于软件, 2022, 39 (2): 324- 329.
doi: 10.3969/j.issn.1000-386x.2022.02.051
|
|
XU D D, XU Y, ZHANG S C, et al. XSS attack detection method based on DCNN-GRU model. Computer Application in Software, 2022, 39 (2): 324- 329.
doi: 10.3969/j.issn.1000-386x.2022.02.051
|
12 |
SEYYAR Y E, YAVUZ A G, UNVER H M. An attack detection framework based on BERT and deep learning. IEEE Access, 2022, 10, 68633- 68644.
doi: 10.1109/ACCESS.2022.3185748
|
13 |
ELUBEYD H, YILTAS-KAPLAN D. Hybrid deep learning approach for automatic DoS/DDoS attacks detection in software-defined networks. Applied Sciences, 2023, 13 (6): 3828.
doi: 10.3390/app13063828
|
14 |
侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展. 计算机科学, 2022, 49 (7): 148- 163.
doi: 10.11896/jsjkx.211200018
|
|
HOU Y T, Abulizi Abudukelimu, Abudukelimu Halidanmu. Research progress on Chinese pre-training models. Computer Science, 2022, 49 (7): 148- 163.
doi: 10.11896/jsjkx.211200018
|
15 |
江魁, 余志航, 陈小雷, 等. 基于BERT-CNN的Webshell流量检测系统设计与实现. 计算机应用, 2023, 43 (S1): 126- 132.
|
|
JIANG K, YU Z H, CHEN X L, et al. Design and implementation of a Webshell traffic detection system based on BERT-CNN. Computer Applications, 2023, 43 (S1): 126- 132.
|
16 |
张玉帅, 赵欢, 李博. 基于BERT和BiLSTM的语义槽填充. 计算机科学, 2021, 48 (1): 247- 252.
doi: 10.11896/jsjkx.191200088
|
|
ZHANG Y S, ZHAO H, LI B. Semantic slot filling based on BERT and BiLSTM. Computer Science, 2021, 48 (1): 247- 252.
doi: 10.11896/jsjkx.191200088
|
17 |
李德玉, 罗锋, 王素格. 融合CNN和标签特征的中文文本情绪多标签分类. 山西大学学报(自然科学版), 2020, 43 (1): 65- 71.
doi: 10.13451/j.sxu.ns.2018138
|
|
LI D Y, LUO F, WANG S G. A multi-label emotion classification method for Chinese text based on CNN and tag features. Journal of Shanxi University(Natural Science Edition), 2020, 43 (1): 65- 71.
doi: 10.13451/j.sxu.ns.2018138
|
18 |
KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). [S. l.]: Association for Computational Linguistics, 2014: 1746-1751.
|
19 |
郝欣达. 基于深度学习的WAF防火墙的设计与实现[D]. 北京: 北京邮电大学, 2020.
|
|
HAO X D. Design and implementation of WAF firewall based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
|
20 |
DAWADI B R, ADHIKARI B, SRIVASTAVA D K. Deep learning technique-enabled Web application firewall for the detection of Web attacks. Sensors, 2023, 23 (4): 2073.
URL
|
21 |
常江. 基于带注意力机制LSTM的Web攻击检测技术研究[D]. 太原: 中北大学, 2022.
|
|
CHANG J. Research on Web attack detection technology based on LSTM with attention mechanism[D]. Taiyuan: North Central University, 2022. (in Chinese)
|
22 |
TEKEREK A. A novel architecture for Web-based attack detection using convolutional neural network. Computers & Security, 2021, 100, 102096.
|
23 |
STIAWAN D, BARDADI A, AFIFAH N, et al. An improved LSTM-PCA ensemble classifier for SQL injection and XSS attack detection. Computer Systems Science and Engineering, 2023, 46 (2): 1759- 1774.
|
24 |
MAC H, TRUONG D, NGUYEN L, et al. Detecting attacks on Web applications using autoencoder[C]//Proceedings of the 9th International Symposium on Information and Communication Technology. New York, USA: ACM Press, 2018: 416-421.
|
25 |
刘吉会, 何成万. 基于ECA规则和动态污点分析的SQL注入攻击在线检测. 计算机应用, 2023, 43 (5): 1534- 1542.
|
|
LIU J H, HE C W. Online detection of SQL injection attacks based on ECA rules and dynamic taint analysis. Journal of Computer Applications, 2023, 43 (5): 1534- 1542.
|
26 |
巫家宏, 杨振国, 刘文印. 基于多尺度特征融合的恶意HTTP请求检测方法. 计算机应用研究, 2021, 38 (3): 871-874, 880.
|
|
WU J H, YANG Z G, LIU W Y. Malicious HTTP request detection method based on multi-scale feature fusion. Computer Application Research, 2021, 38 (3): 871-874, 880.
|
27 |
MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Research, 2008, 9, 2625- 2679.
|