[1] 吴强. 基于深度学习的加热炉板坯号智能识别算法研究[D]. 沈阳:东北大学, 2020. WU Q. Research on intelligent identification algorithm of slab number in heating furnace based on deep learning[D].Shenyang:Northeastern University, 2020. (in Chinese) [2] ISWANTO I A, CHOA T W, LI B. Object tracking based on meanshift and particle-kalman filter algorithm with multi features[J]. Procedia Computer Science, 2019, 157:521-529. [3] LEE S J, YUN J P, KOO G, et al. End-to-end recognition of slab identification numbers using a deep convolutional neural network[J]. Knowledge-Based Systems, 2017, 132:1-10. [4] BAEK Y, LEE B, HAN D, et al. Character region awareness for text detection[EB/OL].[2023-08-10]. https://arxiv.org/pdf/1904.01941.pdf. [5] TAN K, CHAI D, KATO H, et al. Designing a color barcode for mobile applications[J]. IEEE Pervasive Computing, 2012, 11(2):50-55. [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:1232-1243. [7] TIAN Z, HUANG W L, HE T, et al. Detecting text in natural image with connectionist text proposal network[EB/OL].[2023-08-10]. https://arxiv.org/abs/1609.03605. [8] LIAO M H, SHI B G, BAI X. TextBoxes++:a single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27(8):3676-3690. [9] MA J Q, SHAO W Y, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11):3111-3122. [10] LIAO M H, WAN Z Y, YAO C, et al. Real-time scene text detection with differentiable binarization[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.I.]:AAAI Press, 2020:11474-11481. [11] GOODFELLOW I J, BULATOV Y, IBARZ J, et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks[EB/OL].[2023-08-10]. https://arxiv.org/pdf/1312.6082.pdf. [12] GAO Y Z, CHEN Y Y, WANG J Q, et al. Reading scene text with fully convolutional sequence modeling[J]. Neurocomputing, 2019, 339(C):161-170. [13] 丁子轩, 俞雷, 张娟, 等. 基于深度残差自适应注意力网络的图像超分辨率重建[J]. 计算机工程, 2023, 49(5):231-238. DING Z X, YU L, ZHANG J, et al. Image super-resolution reconstruction based on depth residual adaptive attention network[J]. Computer Engineering, 2023, 49(5):231-238.(in Chinese) [14] SHI B G, BAI X, YAO C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11):2298-2304. [15] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:2536-2544. [16] YANG C, LU X, LIN Z, et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:6721-6729. [17] TONG Z, XU P, DENŒUX T. Evidential fully convolutional network for semantic segmentation[J]. Applied Intelligence, 2021, 51(9):6376-6399. [18] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2023-08-10]. https://arxiv.org/pdf/1511.06434.pdf. [19] SHAFIQ M, GU Z Q. Deep residual learning for image recognition:a survey[J]. Applied Sciences, 2022, 12(18):8972. [20] XIE X R, LIU G S, CAI Q, et al. Multi-source sequential knowledge regression by using transfer RNN units[J]. Neural Networks, 2019, 119(C):151-161. [21] LIU B, ZUO X B, YU A Z, et al. Semi-supervised classification of hyperspectral images based on multi-view consistency[J]. Remote Sensing Letters, 2023, 14(5):479-490. [22] XIE S N, TU Z W. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(1):3-18. [23] 施荣华, 金鑫, 胡超. 基于图注意力网络的方面级别文本情感分析[J]. 计算机工程, 2022, 48(2):34-39. SHI R H, JIN X, HU C. Aspect-level text emotion analysis based on graph attention network[J]. Computer Engineering, 2022, 48(2):34-39.(in Chinese) [24] 黄伟, 冯晶晶, 黄遥. 基于多通道极深卷积神经网络的图像超分辨率算法[J]. 计算机工程, 2020, 46(9):242-247, 253. HUANG W, FENG J J, HUANG Y. Super-resolution algorithm for images based on multi-channel extremely deep convolutional neural network[J]. Computer Engineering, 2020, 46(9):242-247, 253.(in Chinese) |