作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (5): 149-154. doi: 10.19678/j.issn.1000-3428.0049940

• 人工智能及识别技术 • 上一篇    下一篇

基于改进随机森林算法的智能环境活动识别

薛铭龙,李一博   

  1. 天津大学 精密仪器与光电子工程学院,天津 300072
  • 收稿日期:2018-01-02 出版日期:2019-05-15 发布日期:2019-05-15
  • 作者简介:薛铭龙(1994—),男,硕士研究生,主研方向为模式识别、人工智能;李一博,副教授、博士生导师。
  • 基金资助:

    天津市自然科学基金(17JCYBJC19300)。

Intelligent Environmental Activity Recognition Based on Improved Random Forest Algorithm

XUE Minglong,LI Yibo   

  1. School of Precision Instruments and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China
  • Received:2018-01-02 Online:2019-05-15 Published:2019-05-15

摘要:

为使智能家居系统从传感器网络返回的数据中自动识别用户行为并生成个性化服务策略,提出一种引入惩罚项的随机森林算法。对每次迭代过程中使用的属性集设置不同的惩罚项因子,生成尽可能不同的决策树,从而兼顾集成算法的多样性与分类精度。在UCI、CASAS数据集上的实验结果表明,与传统集成分类算法Bagging、Adaboost相比,该算法具有更高的分类精度与噪声鲁棒性。

关键词: 自动识别, 集成学习, 惩罚项因子, 分类精度, 噪声鲁棒性

Abstract:

In order to enable smart home systems to automatically identify user behavior and generate personalized service strategies from data returned by sensor networks,a random forest algorithm with penalty items is proposed.Different penalty factors are set to the attribute set used in each iteration to generate as different decision trees as possible,keeping the diversity and classification accuracy of the ensemble algorithm.Experimental results on UCI and CASAS datasets show that compared with the traditional integrated classification algorithms,Bagging and Adaboost,this algorithm has higher classification accuracy and noise robustness.

Key words: automatic recognition, ensemble learning, penalty factor, classification accuracy, noise robustness

中图分类号: