1 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-05-11]. https://arxiv.org/abs/1602.05629.
|
2 |
HAMER J, MOHRI M, SURESH A T. FedBoost: communication-efficient algorithms for federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 3973-3983.
|
3 |
|
4 |
KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for on-device federated learning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2019: 5132-5143.
|
5 |
LIU L, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]//Proceedings of 2020 IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
6 |
HAMMEDI W, BRIK B, SENOUCI S M. Toward optimal MEC-based collision avoidance system for cooperative inland vessels: a federated deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (2): 2525- 2537.
doi: 10.1109/TITS.2022.3154158
|
7 |
LI Q B, DIAO Y Q, CHEN Q A, et al. Federated learning on Non-IID data silos: an experimental study[C]//Proceedings of the 38th International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2022: 965-978.
|
8 |
RISTIC B, LA SCALA B, MORELANDE M, et al. Statistical analysis of motion patterns in AIS data: anomaly detection and motion prediction[C]//Proceedings of the 11th International Conference on Information Fusion. Washington D. C., USA: IEEE Press, 2008: 1-7.
|
9 |
PERERA L P, OLIVEIRA P, SOARES C G. Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (3): 1188- 1200.
doi: 10.1109/TITS.2012.2187282
|
10 |
SHENG P, YIN J B. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data. Sustainability, 2018, 10 (7): 2327.
doi: 10.3390/su10072327
|
11 |
WANG L H, CHEN P F, CHEN L Y, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach. Journal of Marine Science and Engineering, 2021, 9 (6): 566.
doi: 10.3390/jmse9060566
|
12 |
LEE H T, LEE J S, YANG H, et al. An AIS data-driven approach to analyze the pattern of ship trajectories in ports using the DBSCAN algorithm. Applied Sciences, 2021, 11 (2): 799.
doi: 10.3390/app11020799.2020.03.01614
|
13 |
QIAN L, ZHENG Y Z, LI L, et al. A new method of inland water ship trajectory prediction based on long short-term memory network optimized by genetic algorithm. Applied Sciences, 2022, 12 (8): 4073.
doi: 10.3390/app12084073
|
14 |
SUO Y F, CHEN W K, CLARAMUNT C, et al. A ship trajectory prediction framework based on a recurrent neural network. Sensors, 2020, 20 (18): 5133.
doi: 10.3390/s20185133
|
15 |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-05-11]. https://arxiv.org/abs/1412.3555.
|
16 |
CHEN X A, LIU Y C, ACHUTHAN K, et al. A ship movement classification based on Automatic Identification System(AIS) data using convolutional neural network. Ocean Engineering, 2020, 218, 108182.
doi: 10.1016/j.oceaneng.2020.108182
|
17 |
LU J E, LIU A J, DONG F, et al. Learning under concept drift: a review. IEEE Transactions on Knowledge and Data Engineering, 2019, 31 (12): 2346- 2363.
|
18 |
|
19 |
SATTLER F, MULLER K R, SAMEK W. Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (8): 3710- 3722.
doi: 10.1109/TNNLS.2020.3015958
|
20 |
WU X, PEI J, HAN X H, et al. FedFog: federated learning architecture for Non-IID data. Expert Systems with Applications, 2024, 237, 121390.
doi: 10.1016/j.eswa.2023.121390
|
21 |
陈乃月, 金一, 李浥东, 等. 基于区块链的公平性联邦学习模型. 计算机工程, 2022, 48 (6): 33- 41.
URL
|
|
CHEN N Y, JIN Y, LI Y D, et al. Federated learning model with fairness based on blockchain. Computer Engineering, 2022, 48 (6): 33- 41.
URL
|
22 |
|
23 |
MENDIETA M, YANG T, WANG P, et al. Local learning matters: rethinking data heterogeneity in federated learning[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 8387-8396.
|
24 |
|
25 |
|
26 |
温依霖, 赵乃良, 曾艳, 等. 基于本地模型质量的客户端选择方法. 计算机工程, 2023, 49 (6): 131- 143.
URL
|
|
WEN Y L, ZHAO N L, ZENG Y, et al. Client selection method based on local model quality. Computer Engineering, 2023, 49 (6): 131- 143.
URL
|