| 1 |
TU J , CHENG P , CHEN L . Quality-assured synchronized task assignment in crowd sourcing. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (3): 1156- 1168.
|
| 2 |
ZHANG X M , WU Y B , HUANG L F , et al. Expertise-aware truth analysis and task allocation in mobile crowdsourcing. IEEE Transactions on Mobile Computing, 2021, 20 (3): 1001- 1016.
doi: 10.1109/TMC.2019.2955688
|
| 3 |
ZHANG C , ZHU L H , XU C , et al. PPDP: an efficient and privacy-preserving disease prediction scheme in cloud-based e-healthcare system. Future Generation Computer Systems, 2018, 79, 16- 25.
doi: 10.1016/j.future.2017.09.002
|
| 4 |
BAIER P, DURR F, ROTHERMEL K. Efficient distribution of sensing queries in public sensing systems[C]//Proceedings of the 10th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems. Washington D.C., USA: IEEE Press, 2013: 272-280.
|
| 5 |
MAO X, MIAO X, HE Y, et al. CitySee: urban CO2 monitoring with sensors[C]//Proceedings of the 10th International Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2012: 1611-1619.
|
| 6 |
LI Y L , GAO J , MENG C S , et al. A survey on truth discovery. ACM SIGKDD Explorations News Letter, 2016, 17 (2): 1- 16.
doi: 10.1145/2897350.2897352
|
| 7 |
LI Q, LI Y L, GAO J, et al. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation[C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2014: 1187-1198.
|
| 8 |
MIAO C L, JIANG W J, SU L, et al. Cloud-enabled privacy-preserving truth discovery in crowd sensing systems[C]//Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York, USA: ACM Press, 2015: 183-196.
|
| 9 |
ZHAO Y , CHEN J J . A survey on differential privacy for unstructured data content. ACM Computing Surveys, 2022, 54 (10): 1- 28.
|
| 10 |
YAO A C. How to generate and exchange secrets[C]//Proceedings of the 27th Annual Symposium on Foundations of Computer Science. Washington D.C., USA: IEEE Press, 1986: 162-167.
|
| 11 |
ZHI S, ZHAO B, TONG W Z, et al. Modeling truth existence in truth discovery[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2015: 1543-1552.
|
| 12 |
LI X , DONG X L , LYONS K , et al. Truth finding on the deep web. Proceedings of the VLDB Endowment, 2012, 6 (2): 97- 108.
doi: 10.14778/2535568.2448943
|
| 13 |
LI Q , LI Y L , GAO J , et al. A confidence-aware approach for truth discovery on long-tail data. Proceedings of the VLDB Endowment, 2014, 8 (4): 425- 436.
doi: 10.14778/2735496.2735505
|
| 14 |
XU G W , LI H W , TAN C , et al. Achieving efficient and privacy-preserving truth discovery in crowd sensing systems. Computers & Security, 2017, 69, 114- 126.
|
| 15 |
LI Y L, MIAO C L, SU L, et al. An efficient two-layer mechanism for privacy-preserving truth discovery[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 1705-1714.
|
| 16 |
LIU Y X , TANG S H , WU H T , et al. RTPT: a framework for real-time privacy-preserving truth discovery on crowdsensed data streams. Computer Networks, 2019, 148, 349- 360.
doi: 10.1016/j.comnet.2018.11.018
|
| 17 |
ZHANG C , ZHU L H , XU C , et al. Reliable and privacy-preserving truth discovery for mobile crowdsensing systems. IEEE Transactions on Dependable and Secure Computing, 2019, 5, 1- 5.
|
| 18 |
MIAO C L, SU L, JIANG W J, et al. A lightweight privacy-preserving truth discovery framework for mobile crowd sensing systems[C]// Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2017: 1-9.
|
| 19 |
ZHENG Y F , DUAN H Y , YUAN X L , et al. Privacy-aware and efficient mobile crowdsensing with truth discovery. IEEE Transactions on Dependable and Secure Computing, 2020, 17 (1): 121- 133.
doi: 10.1109/TDSC.2017.2753245
|
| 20 |
ARANHA D F, LIN C W, ORLANDI C, et al. Laconic private set-intersection from pairings[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2022: 111-124.
|
| 21 |
BELL J, GASCÓN A, GHAZI B, et al. Distributed, private, sparse histograms in the two-server model[C]//Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM Press, 2022: 307-321.
|
| 22 |
ALEX B, LIN H J, SONG F, et al. Oblivious transfer is in MiniQCrypt[C]//Proceedings of the 21st Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Germany: Springer, 2021: 531-561.
|
| 23 |
WANG D, KAPLAN L, LE H, et al. On truth discovery in social sensing: a maximum likelihood estimation approach[C]//Proceedings of the 11th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). Washington D.C., USA: IEEE Press, 2012: 233-244.
|
| 24 |
MA F L, LI Y L, LI Q, et al. FaitCrowd: fine grained truth discovery for crowdsourced data aggregation[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2015: 745-754.
|
| 25 |
MENG C S, JIANG W J, LI Y L, et al. Truth discovery on crowd sensing of correlated entities[C]//Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York, USA: ACM Press, 2015: 169-182.
|
| 26 |
LI Y L , LI Q , GAO J , et al. Conflicts to harmony: a framework for resolving conflicts in heterogeneous data by truth discovery. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (8): 1986- 1999.
doi: 10.1109/TKDE.2016.2559481
|
| 27 |
张攀峰, 吴丹华, 董明刚. 基于粒子群优化的差分隐私深度学习模型. 计算机工程, 2023, 49 (9): 144- 157.
doi: 10.19678/j.issn.1000-3428.0065590
|
|
ZHANG P F , WU D H , DONG M G . Differential privacy deep learning model based on particle swarm optimization. Computer Engineering, 2023, 49 (9): 144- 157.
doi: 10.19678/j.issn.1000-3428.0065590
|
| 28 |
LI Y L, XIAO H P, QIN Z, et al. Towards differentially private truth discovery for crowd sensing systems[C]// Proceedings of the 40th IEEE International Conference on Distributed Computing Systems (ICDCS). Washington D.C., USA: IEEE Press, 2020: 1156-1166.
|
| 29 |
TANG J C, FU S J, XU M, et al. Achieve privacy-preserving truth discovery in crowdsensing systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1301-1310.
|
| 30 |
ZHANG C , ZHAO M Y , ZHU L H , et al. Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Transactions on Information Forensics and Security, 2022, 17, 3569- 3581.
doi: 10.1109/TIFS.2022.3207905
|