作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 210-220. doi: 10.19678/j.issn.1000-3428.0069214

• 网络空间安全 • 上一篇    下一篇

基于层次联邦与动态权重的卫星网络异常检测方法

牛渲文1, 杜晔1,2,*(), 杨明松3, 李昂3, 黎妹红1,2   

  1. 1. 北京交通大学智能交通数据安全与隐私保护技术北京市重点实验室, 北京 100044
    2. 北京交通大学国家经济安全预警工程北京实验室, 北京 100044
    3. 北京交通大学詹天佑学院, 北京 100044
  • 收稿日期:2024-01-12 修回日期:2024-07-15 出版日期:2025-12-15 发布日期:2025-12-16
  • 通讯作者: 杜晔
  • 基金资助:
    北京市自然科学基金(L254063); 中央引导地方科技发展资金(246Z0705G); 中央高校基本科研业务费专项资金(2024JBZX018)

Anomaly Detection Method for Satellite Networks Based on Hierarchical Federation and Dynamic Weights

NIU Xuanwen1, DU Ye1,2,*(), YANG Mingsong3, LI Ang3, LI Meihong1,2   

  1. 1. Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China
    2. Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, China
    3. Jeme Tienyow Honors College, Beijing Jiaotong University, Beijing 100044, China
  • Received:2024-01-12 Revised:2024-07-15 Online:2025-12-15 Published:2025-12-16
  • Contact: DU Ye

摘要:

随着全球卫星网络的发展与覆盖, 卫星网络攻击的影响逐渐扩大, 开展卫星网络攻击或异常行为检测研究, 对保障空天地一体化网络安全至关重要。针对联邦学习(FL)在卫星网络分布式异常检测中存在通信连接不稳定、聚合时间过长的问题, 提出一种基于层次FL与改进动态半异步聚合算法的卫星网络异常检测方法。首先, 融合层次FL进行分布式异常检测模型训练与分层聚合, 提出一种3层架构的空天地协同异常检测框架, 将高空通信平台站(HAPS)作为边缘计算层用于局部聚合, 解决星地通信范围有限的问题; 然后, 针对FL在卫星网络中存在的通信连接不稳定、聚合时间过长的问题, 提出并实现一种改进动态半异步联邦聚合算法, 结合卫星状态信息构造改进聚合时机序列和动态权重, 缓解由于星地通信间歇性而导致的聚合时间过长、模型精度受影响的问题。在STIN和CIC-IDS-2017数据集上的对比实验结果表明, 该方法在保证良好的异常检测模型性能的同时, 有效提高了卫星网络分布式异常检测中的FL聚合效率。

关键词: 层次联邦学习, 动态权重, 卫星网络, 异常检测, 近地轨道

Abstract:

Satellite network attacks have gradually increased with the development and widespread coverage of global satellite networks. Research on satellite network attacks or anomaly behavior detection is paramount for ensuring the security of space-air-ground integrated networks. Considering the issues of unstable communication and prolonged aggregation time in the application of Federated Learning (FL) for distributed anomaly detection in satellite networks, this paper proposes a satellite network anomaly detection method based on hierarchical FL and an improved dynamic semi-asynchronous aggregation algorithm. First, by integrating the hierarchical FL for distributed anomaly detection model training and hierarchical aggregation, a three-tier architecture for a space-air-ground collaborative anomaly detection framework is proposed. The proposed framework utilizes High-Altitude Platform Stations (HAPS) as an edge computing layer for local aggregation, addressing the limited satellite-ground communication range. Subsequently, to address unstable communication and prolonged aggregation times in FL within satellite networks, an improved dynamic semi-asynchronous federated aggregation algorithm is proposed and implemented. This algorithm constructs an improved aggregation timing sequence and dynamic weights by incorporating satellite status information, thereby mitigating the issues of prolonged aggregation time and compromised model accuracy caused by intermittent satellite-ground communication. Comparative experiments on the STIN and CIC-IDS-2017 datasets reveal that the proposed method effectively enhances FL aggregation efficiency in distributed anomaly detection for satellite networks while maintaining the excellent performance of the anomaly detection model.

Key words: hierarchical Federated Learning (FL), dynamic weights, satellite network, anomaly detection, Low Earth Orbit (LEO)