| 1 |
KODHELI O , LAGUNAS E , MATURO N , et al. Satellite communications in the new space era: a survey and future challenges. IEEE Communications Surveys & Tutorials, 2021, 23 (1): 70- 109.
|
| 2 |
GUO H Z , LI J Y , LIU J J , et al. A survey on space-air-ground-sea integrated network security in 6G. IEEE Communications Surveys & Tutorials, 2022, 24 (1): 53- 87.
|
| 3 |
YAO H P , WANG L Y , WANG X D , et al. The space-terrestrial integrated network: an overview. IEEE Communications Magazine, 2018, 56 (9): 178- 185.
doi: 10.1109/MCOM.2018.1700038
|
| 4 |
蒋长林, 李清, 王羽, 等. 天地一体化网络关键技术研究综述. 软件学报, 2024, 35 (1): 266- 287.
|
|
JIANG C L , LI Q , WANG Y , et al. Survey on key technologies in space-ground integrated network. Journal of Software, 2024, 35 (1): 266- 287.
|
| 5 |
|
| 6 |
ASHRAF I , NARRA M , UMER M , et al. A deep learning-based smart framework for cyber-physical and satellite system security threats detection. Electronics, 2022, 11 (4): 667.
doi: 10.3390/electronics11040667
|
| 7 |
AGRAWAL S , SARKAR S , AOUEDI O , et al. Federated learning for intrusion detection system: concepts, challenges and future directions. Computer Communications, 2022, 195, 346- 361.
doi: 10.1016/j.comcom.2022.09.012
|
| 8 |
ZHAO J Y, ZOU J X, LI Z P, et al. High Altitude Platform (HAP) communication system based on satellite communication theory[C]//Proceedings of the 22nd IEEE International Conference on Communication Technology (ICCT). Washington D.C., USA: IEEE Press, 2022: 446-450.
|
| 9 |
GUO W , XU J , PEI Y K , et al. A distributed collaborative entrance defense framework against DDoS attacks on satellite Internet. IEEE Internet of Things Journal, 2022, 9 (17): 15497- 15510.
doi: 10.1109/JIOT.2022.3176121
|
| 10 |
CAO S , DANG S X , ZHANG Y , et al. A blockchain-based access control and intrusion detection framework for satellite communication systems. Computer Communications, 2021, 172, 216- 225.
doi: 10.1016/j.comcom.2021.03.023
|
| 11 |
LAVAUR L , PAHL M O , BUSNEL Y , et al. The evolution of federated learning-based intrusion detection and mitigation: a survey. IEEE Transactions on Network and Service Management, 2022, 19 (3): 2309- 2332.
doi: 10.1109/TNSM.2022.3177512
|
| 12 |
刘金硕, 詹岱依, 邓娟, 等. 基于深度神经网络和联邦学习的网络入侵检测. 计算机工程, 2023, 49 (1): 15-21, 30.
doi: 10.19678/j.issn.1000-3428.0065155
|
|
LIU J S , ZHAN D Y , DENG J , et al. Network intrusion detection based on deep neural network and federated learning. Computer Engineering, 2023, 49 (1): 15-21, 30.
doi: 10.19678/j.issn.1000-3428.0065155
|
| 13 |
LI K , ZHOU H C , TU Z , et al. Distributed network intrusion detection system in satellite-terrestrial integrated networks using federated learning. IEEE Access, 2020, 8, 214852- 214865.
doi: 10.1109/ACCESS.2020.3041641
|
| 14 |
MOUSTAFA N , KHAN I A , HASSANIN M , et al. DFSat: deep federated learning for identifying cyber threats in IoT-based satellite networks. IEEE Transactions on Industrial Informatics, 2024, 8, 1- 8.
|
| 15 |
SALIM S , MOUSTAFA N , HASSANIAN M , et al. Deep-federated-learning-based threat detection model for extreme satellite communications. IEEE Internet of Things Journal, 2024, 11 (3): 3853- 3867.
doi: 10.1109/JIOT.2023.3301626
|
| 16 |
RAZMI N, MATTHIESEN B, DEKORSY A, et al. On-board federated learning for dense LEO constellations[C]//Proceedings of the IEEE International Conference on Communications. Washington D.C., USA: IEEE Press, 2022: 4715-4720.
|
| 17 |
ELMAHALLAWY M, LUO T, IBRAHEM M I. Secure and efficient federated learning in LEO constellations using decentralized key generation and on-orbit model aggregation[C]//Proceedings of the 2023 IEEE Global Communications Conference. Washington D.C., USA: IEEE Press, 2023: 5727-5732.
|
| 18 |
|
| 19 |
|
| 20 |
LIU L M, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning[C]//Proceedings of the 2020 IEEE International Conference on Communications (ICC). Washington D.C., USA: IEEE Press, 2020: 1-6.
|
| 21 |
MEI C L, GAO C, XING Y X, et al. An energy consumption minimization optimization scheme for HAP-satellites edge computing[C]//Proceedings of the 22nd IEEE International Conference on Communication Technology (ICCT). Washington D.C., USA: IEEE Press, 2022: 857-862.
|
| 22 |
LI T , SAHU A K , ZAHEER M , et al. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2020, 2, 429- 450.
|
| 23 |
CHEN Y , SUN X Y , JIN Y C . Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (10): 4229- 4238.
|
| 24 |
|
| 25 |
ZHANG H, WU T T, CHENG S Y, et al. Aperiodic local SGD: beyond local SGD[C]//Proceedings of the 51st International Conference on Parallel Processing. Washington D.C., USA: IEEE Press, 2022: 1-10.
|
| 26 |
张泰江, 李勇军, 赵尚弘. 基于GEO/LEO双层卫星网络的路由算法优化设计. 计算机工程, 2020, 46 (7): 198- 205.
doi: 10.19678/j.issn.1000-3428.0055504
|
|
ZHANG T J , LI Y J , ZHAO S H . Optimization design of routing algorithm based on GEO/LEO double-layer satellite network. Computer Engineering, 2020, 46 (7): 198- 205.
doi: 10.19678/j.issn.1000-3428.0055504
|
| 27 |
VEMURI S S , DAPPURI B . Walker-Delta constellation design for LEO-based navigation using small satellites. IET Conference Proceedings, 2022, 2022 (1): 250- 253.
doi: 10.1049/icp.2022.0627
|
| 28 |
郑鹏飞, 陈宏宇, 郭崇滨. 低轨巨型链形星座解析设计及效能分析. 西北工业大学学报, 2022, 40 (1): 148- 157.
|
|
ZHENG P F , CHEN H Y , GUO C B . Analytical design and performance analysis of LEO mega chain satellite constellation. Journal of Northwestern Polytechnical University, 2022, 40 (1): 148- 157.
|
| 29 |
DAKIC K, CHAN C C, AL HOMSSI B, et al. On delay performance in mega satellite networks with inter-satellite links[C]//Proceedings of the 2023 IEEE Global Communications Conference. Washington D.C., USA: IEEE Press, 2023: 4896-4901.
|