1 |
TRISEDYA B D, WEIKUM G, QI J Z, et al. Neural relation extraction for knowledge base enrichment[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2019: 229-240.
|
2 |
LI Z F , LIU H , ZHANG Z L , et al. Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (8): 3961- 3973.
doi: 10.1109/TNNLS.2021.3055147
|
3 |
胡晗, 刘鹏远. 小样本关系分类研究综述. 中文信息学报, 2022, 36 (2): 1- 11.
doi: 10.3969/j.issn.1003-0077.2022.02.001
|
|
HU H , LIU P Y . Few-shot relation classification: a survey. Journal of Chinese Information Processing, 2022, 36 (2): 1- 11.
doi: 10.3969/j.issn.1003-0077.2022.02.001
|
4 |
YUAN J B, GUO H, JINzW, et al. One-shot learning for fine-grained relation extraction via convolutional siamese neural network[C]//Proceedings of 2017 IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2017: 21-35.
|
5 |
SUNG F, YANG Y X, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1199-1208.
|
6 |
HAN X, ZHU H, YUPF, et al. FewRel: a large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation[EB/OL]. [2023-10-12]. https://arxiv.org/pdf/1810.10147.
|
7 |
MUNKHDALAI T, YU H. Meta networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2017: 102-109.
|
8 |
|
9 |
HOSPEDALES T , ANTONIOU A , MICAELLI P , et al. Meta-learning in neural networks: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 5149- 5169.
|
10 |
ZHANG S C , LI X L , ZONG M , et al. Efficient kNN classification with different numbers of nearest neighbors. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (5): 1774- 1785.
doi: 10.1109/TNNLS.2017.2673241
|
11 |
ZHAO A, DING M Y, LUzW, et al. Domain-adaptive few-shot learning[C]//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1389-1398.
|
12 |
|
13 |
TIAN Y J , ZHAO X X , HUANG W . Meta-learning approaches for learning-to-learn in deep learning: a survey. Neurocomputing, 2022, 44, 203- 223.
|
14 |
JIANG W , HUANG K , GENG J , et al. Multi-scale metric learning for few-shot learning. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (3): 1091- 1102.
doi: 10.1109/TCSVT.2020.2995754
|
15 |
RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedings of International Conference on Learning Representations. New York, USA: ACM Press, 2017: 135-139.
|
16 |
|
17 |
GAO T Y, HAN X, LIUzY, et al. Hybrid attention-based prototypical networks for noisy few-shot relation classification[C]//Proceedings of AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2019: 6187-6195.
|
18 |
|
19 |
QU M, GAO T, XHONNEUX L P, et al. Few-shot relation extraction via bayesian meta-learning on relation graphs[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2020: 7867-7876.
|
20 |
|
21 |
|
22 |
YANG K, ZHENG N, DAI X, et al. Enhance prototypical network with text descriptions for few-shot relation classification[C]//Proceedings of the 29th ACM International Conference on Information&Knowledge Management. New York, USA: ACM Press, 2020: 2273-2276.
|
23 |
|
24 |
SOARES L B, FITZGERALD N, LING J, et al. Matching the blanks: distributional similarity for relation learning[EB/OL]. [2023-10-12]. https://arxiv.org/abs/1906.03158.
|
25 |
CONG X, YU B W, LIU T W, et al. Inductive unsupervised domain adaptation for few-shot classification via clustering[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer, 2021: 624-639.
|
26 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of Conference on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA: Association for Computational Linguistic, 2019: 4171-4186.
|
27 |
LIU Y, HU J, WAN X, et al. Learn from relation information: towards prototype representation rectification for few-shot relation extraction[C]//Proceedings of the Association for Computational Linguistics. San Diego, USA: Association for Computational Linguistic, 2022: 1822-1831.
|
28 |
刘昊鑫, 董超, 勾智楠, 等. 融合混合表征的小样本关系抽取方法. 计算机工程, 2023, 49 (8): 63- 68.
doi: 10.19678/j.issn.1000-3428.0065258
|
|
LIU H X , DONG C , GOU Z N , et al. Few-shot relation extraction method fusing with hybrid representation. Computing Engineering, 2023, 49 (8): 63- 68.
doi: 10.19678/j.issn.1000-3428.0065258
|