1 |
JIANG L, YU M, ZHOU M, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. [S. l. ]: Association for Computational Linguistics, 2011: 151-160.
|
2 |
|
3 |
MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2017: 4068-4074.
|
4 |
|
5 |
|
6 |
ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2019: 4568-4578.
|
7 |
LIANG B, YIN R D, GUI L, et al. Jointly learning aspect-focused and inter-aspect relations with graph convolutional networks for aspect sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics. Washington D. C., USA: IEEE Press, 2020: 150-161.
|
8 |
王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析. 电子与信息学报, 2022, 44(3): 1111- 1118.
URL
|
|
WANG R Y, TAO Z Y, ZHAO R J, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis. Journal of Electronics & Information Technology, 2022, 44(3): 1111- 1118.
URL
|
9 |
齐嵩喆, 黄贤英, 孙海栋, 等. 基于渐进增强与图卷积的方面级情感分析模型. 计算机应用研究, 2022, 39(7): 2037- 2042.
URL
|
|
QI S Z, HUANG X Y, SUN H D, et al. Aspect based sentiment analysis with progressive enhancement and graph convolution. Application Research of Computers, 2022, 39(7): 2037- 2042.
URL
|
10 |
WANG K, SHEN W Z, YANG Y Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2020: 3229-3238.
|
11 |
MA Y K, PENG H Y, KHAN T, et al. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cognitive Computation, 2018, 10(4): 639- 650.
doi: 10.1007/s12559-018-9549-x
|
12 |
LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Systems, 2022, 235, 107643.
doi: 10.1016/j.knosys.2021.107643
|
13 |
CHEN J D, HU Y Z, LIU J P, et al. Deep short text classification with knowledge powered attention. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6252- 6259.
doi: 10.1609/aaai.v33i01.33016252
|
14 |
BIAN X M, FENG C, AHMAD A, et al. Targeted sentiment classification with knowledge powered attention network[C]//Proceedings of the 31st IEEE International Conference on Tools with Artificial Intelligence. Washington D. C., USA: IEEE Press, 2020: 1073-1080.
|
15 |
KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2014: 1746-1751.
|
16 |
FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2018: 3433-3442.
|
17 |
ZHANG M, QIAN T Y. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2020: 3540-3549.
|
18 |
CAMBRIA E, SPEER R, HAVASI C, et al. SenticNet: a publicly available semantic resource for opinion mining[EB/OL]. [2022-09-05]. http://sentic.net/senticnet.pdf.
|
19 |
CAMBRIA E, LI Y, XING F Z, et al. SenticNet 6: ensemble application of symbolic and subsymbolic AI for sentiment analysis[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 105-114.
|
20 |
JI L, WANG Y J, SHI B T, et al. Microsoft concept graph: mining semantic concepts for short text understanding. Data Intelligence, 2019, 1(3): 238- 270.
doi: 10.1162/dint_a_00013
|
21 |
CAO S L, QIAN B Y, YIN C C, et al. Knowledge guided short-text classification for healthcare applications[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2017: 31-40.
|
22 |
HU L M, YANG T C, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2019: 4821-4830.
|
23 |
CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2017: 452-461.
|
24 |
DONG L, WEI F R, TAN C Q, et al. Adaptive recursive neural network for target-dependent Twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. [S. l. ]: Association for Computational Linguistics, 2014: 49-54.
|
25 |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2014: 27-35.
|
26 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2015: 486-495.
|
27 |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation. [S. l. ]: Association for Computational Linguistics, 2016: 19-30.
|
28 |
CHEN C H, TENG Z Y, ZHANG Y. Inducing target-specific latent structures for aspect sentiment classification[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2020: 5596-5607.
|
29 |
巫浩盛, 缪裕青, 张万桢, 等. 基于距离与图卷积网络的方面级情感分析. 计算机应用研究, 2021, 38(11): 3274-3278, 3321.
URL
|
|
WU H S, MIAO Y Q, ZHANG W Z, et al. Aspect level sentiment analysis based on distance and graph convolution network. Application Research of Computers, 2021, 38(11): 3274-3278, 3321.
URL
|
30 |
HOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification. Knowledge-Based Systems, 2020, 205, 106292.
|
31 |
XU G T, LIU P Y, ZHU Z F, et al. Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention. Applied Sciences, 2021, 11(8): 3640- 3653.
|