[1] 范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建[J]. 计算机工程, 2023, 49(9):217-225. FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion[J]. Computer Engineering, 2023, 49(9):217-225.(in Chinese) [2] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:770-778. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-12-10]. https://www.arxiv.org/pdf/1409.1556.pdf. [4] LAKE B, SALAKHUTDINOV R, GROSS J, et al. One shot learning of simple visual concepts[C]//Proceedings of Cognitive Science Society Annual Conference. Boston, USA:The Cognitive Science Society Press, 2011:2568-2573. [5] LAMPERT C H, NICKISCH H, HARMELING S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3):453-465. [6] JANKOWSKI N, GRABCZEWSKI K. Universal meta-learning architecture and algorithms[M]//JANKOWSKI N, DUCH W, GRĄBCZEWSKI K. Meta-learning in computational intelligence. Berlin, Germany:Springer, 2011:1-76. [7] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:4080-4090. [8] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266):1332-1338. [9] ALTAE-TRAN H, RAMSUNDAR B, PAPPU A S, et al. Low data drug discovery with one-shot learning[J]. ACS Central Science, 2017, 3(4):283-293. [10] YE X H, ZHANG X M, HE B C, et al. Rolling bearing fault diagnosis with variable load and few samples based on multifeature fusion meta-learning[C]//Proceedings of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes. Washington D. C., USA:IEEE Press, 2023:1-6. [11] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York, USA:ACM Press, 2017:1126-1135. [12] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2016:3637-3745. [13] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]//Proceedings of International Conference on Learning Representations. Toulon, France:OpenReview Press, 2017:1-6. [14] HITCHCOCK F L. The expression of a tensor or a polyadic as a sum of products[J]. Journal of Mathematics and Physics, 1927, 6(1/2/3/4):164-189. [15] CICHOCKI A, MANDIC D, DE LATHAUWER L, et al. Tensor decompositions for signal processing applications:from two-way to multiway component analysis[J]. IEEE Signal Processing Magazine, 2015, 32(2):145-163. [16] SIDIROPOULOS N D, DE LATHAUWER L, FU X, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(13):3551-3582. [17] FROLOV E, OSELEDETS I. Tensor methods and recommender systems[J]. WIREs Data Mining and Knowledge Discovery, 2017, 7(3):e1201. [18] WANG J H, ZHANG W S, CHEN Y F, et al. Time-varying channel estimation scheme for uplink MU-MIMO in 6G systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11):11820-11831. [19] ZHOU Z, LIU L J, XU J R. Harnessing tensor structures-multi-mode reservoir computing and its application in massive MIMO[J]. IEEE Transactions on Wireless Communications, 2022, 21(10):8120-8133. [20] KALIYAR R K, GOSWAMI A, NARANG P. DeepFakE:improving fake news detection using tensor decomposition-based deep neural network[J]. The Journal of Supercomputing, 2021, 77(2):1015-1037. [21] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3):455-500. [22] OSELEDETS I V. Tensor-train decomposition[J]. SIAM Journal on Scientific Computing, 2011, 33(5):2295-2317. [23] ZHAO Q B, ZHOU G X, XIE S L, et al. Tensor ring decomposition[EB/OL].[2023-12-10]. https://arxiv.org/abs/1606.05535. [24] SONG Q Q, GE H C, CAVERLEE J, et al. Tensor completion algorithms in big data analytics[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(1):6. [25] LIU J, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):208-220. [26] SEKAR K, DEVI K S, SRINIVASAN P. Compressed tensor completion:a robust technique for fast and efficient data reconstruction in wireless sensor networks[J]. IEEE Sensors Journal, 2022, 22(11):10794-10807. [27] YOKOTA T, ZHAO Q B, CICHOCKI A. Smooth PARAFAC decomposition for tensor completion[J]. IEEE Transactions on Signal Processing, 2016, 64(20):5423-5436. [28] ZHOU P, LU C Y, LIN Z C, et al. Tensor factorization for low-rank tensor completion[J]. IEEE Transactions on Image Processing, 2018, 27(3):1152-1163. [29] BENGUA J A, PHIEN H N, TUAN H D, et al. Efficient tensor completion for color image and video recovery:low-rank tensor train[J]. IEEE Transactions on Image Processing, 2017, 26(5):2466-2479. [30] CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment:practical automated data augmentation with a reduced search space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA:IEEE Press, 2020:3008-3017. [31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2014:2672-2680. [32] DIXIT M, KWITT R, NIETHAMMER M, et al. AGA:attribute-guided augmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:3328-3336. [33] 刘鑫鹏, 栾悉道, 谢毓湘, 等. 迁移学习研究和算法综述[J]. 长沙大学学报, 2018, 32(5):28-31, 36. LIU X P, LUAN X D, XIE Y X, et al. Transfer learning research and algorithm review[J]. Journal of Changsha University, 2018, 32(5):28-31, 36.(in Chinese) [34] WANG H. Research review on transfer learning[J]. Computer Knowledge and Technology, 2017, 13(32):203-205. [35] 刘鑫, 周凯锐, 何玉琳, 等. 基于度量的小样本分类方法研究综述[J]. 模式识别与人工智能, 2021, 34(10):909-923. LIU X, ZHOU K R, HE Y L, et al. Survey of metric-based few-shot classification[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(10):909-923.(in Chinese) [36] 陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程, 2022, 48(11):1-13. CHEN L C, FU D Y. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11):1-13.(in Chinese) [37] SANTORO A, BARTUNOV S, BOTVINICK M, et al. One-shot learning with memory-augmented neural networks[C]//Proceedings of International Conference on Machine Learning. New York, USA:ACM Press, 2016:2740-2753. [38] MUNKHDALAI T, YU H. Meta networks[C]//Proceedings of International Conference on Machine Learning. New York, USA:ACM Press, 2017:2554-2563. |