作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2021, Vol. 47 ›› Issue (5): 244-250,259. doi: 10.19678/j.issn.1000-3428.0056969

• 图形图像处理 • 上一篇    下一篇

语义匹配网络的小样本学习

汪荣贵, 汤明空, 杨娟, 薛丽霞, 胡敏   

  1. 合肥工业大学 计算机与信息学院, 合肥 230601
  • 收稿日期:2019-12-12 修回日期:2020-03-09 发布日期:2021-05-11
  • 作者简介:汪荣贵(1966-),男,教授、博士生导师,主研方向为智能视频处理与分析、车载视觉增强系统;汤明空,硕士研究生;杨娟,博士;薛丽霞,副教授;胡敏,教授。
  • 基金资助:
    国家自然科学基金“基于视听信息融合的情感机器人情感识别与情感建模研究”(61672202)。

Semantic Matching Network for Few-Shot Learning

WANG Ronggui, TANG Mingkong, YANG Juan, XUE Lixia, HU Min   

  1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601, China
  • Received:2019-12-12 Revised:2020-03-09 Published:2021-05-11

摘要: 针对深度学习领域内通过少量样本难以实现视觉识别的小样本学习问题,提出一种新的语义匹配网络。利用双注意力机制匹配图像的语义信息,并在多尺度分类网络下匹配图像的相似度,提升同类别样本之间的语义相关性,从而获得更加准确的样本类别。实验结果表明,与Siamese Net、Matching Net等网络相比,该语义匹配网络可有效提取样本间的语义信息,提升小样本分类准确率。

关键词: 深度学习, 小样本学习, 语义匹配, 注意力机制, 特征提取

Abstract: In the field of deep learning,it is difficult to achieve visual recognition with a small number of samples.To address the problem,this paper proposes a semantic matching network.The dual attention mechanism is used to match the semantic information of the image,and the similarity of the image is matched under a multi-scale classification network to improve the semantic relevance between samples of the same category,so as to obtain more accurate sample categories.Experimental results show that the semantic matching network can effectively extract the semantic information between samples and improve the accuracy of few-shot classification.

Key words: deep learning, few-shot learning, semantic matching, attention mechanism, feature extraction

中图分类号: