[1] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Proceedings of NIPS'12.New York,USA:ACM Press,2012:84-90. [2] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[EB/OL].[2019-11-10].https://arxiv.org/abs/1409.4842. [3] HUANG G,LIU Z,VAN DER M L,et al.Densely connected convolutional networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1608.06993. [4] REN S,HE K,GIRSHICK R B,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Washington D.C.,USA:IEEE Press,2015:91-99. [5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:779-788. [6] LIU W,ANGUEIOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:21-37. [7] ZHANG X T,QIANG Y T,SUNG F,et al.RelationNet2:deep comparison columns for few-shot learning[EB/OL].[2019-11-10].https://arxiv.org/abs/1811.07100. [8] LI F F,FERGUS L,PERONA R.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611. [9] LAKE B M,SALAKHUTDINOV R,GROSS J,et al.One shot learning of simple visual concepts[C]//Proceedings of Annual Meeting of the Cognitive Science Society.Boston,USA:[s.n.],2011:1-6. [10] KOCH G,ZEMEL R,SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[EB/OL].[2019-11-10].https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf. [11] SNELL J,SWERSKY K,ZEMEL R S.Prototypical networks for few-shot learning[EB/OL].[2019-11-10].https://arxiv.org/abs/1703.05175. [12] SUNG F,YANG Y,ZHANG W,et al.Learning to compare:relation network for few-shot learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1199-1208. [13] VINYALS O,BLUNDELL C,LILLICRAP T,et al.Matching networks for one shot learning[EB/OL].[2019-11-10].https://arxiv.org/abs/1606.04080. [14] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [15] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[EB/OL].[2019-11-10].https://arxiv.org/abs/1706.03762. [16] RAVI S,LAROCHELLE H.Optimization as a model for few-shot learning[C]//Proceedings of IEEE International Conference on Learning Representations.Washington D.C.,USA:IEEE Press,2017:157-168. [17] FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1703.03400. [18] GARCIA V,BRUNA J.Few-shot learning with graph neural networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1711.04043v1. [19] GIDARIS S,KOMODAKIS N.Dynamic few-shot visual learning without forgetting[EB/OL].[2019-11-10].https://arxiv.org/abs/1804.09458. [20] MUNKHDALIA T,YUAN X,MEHRI S,et al.Rapid adaptation with conditionally shifted neurons[EB/OL].[2019-11-10].https://arxiv.org/abs/1712.09926v3. [21] QIAO Siyuan,LIU Chenxi,SHEN Wei,et al.Few-shot image recognition by predicting parameters from activations[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7229-7238. [22] HAN Zhidong.Dyna:a method of momentum for stochastic optimization[EB/OL].[2019-11-10].https://arxiv.org/abs/1805.04933. [23] SHEN Hao.Towards a mathematical understanding of the difficulty in learning with feedforward neural networks[EB/OL].[2019-11-10].https://arxiv.org/abs/1611.05827. [24] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359. |