1 |
CHEUNG F . TCM: made in China. Nature, 2011, 480 (7378): S82- S83.
doi: 10.1038/480S82a
|
2 |
WANG W Y , ZHOU H , WANG Y F , et al. Current policies and measures on the development of traditional Chinese medicine in China. Pharmacological Research, 2021, 163, 105187.
doi: 10.1016/j.phrs.2020.105187
|
3 |
SHI X F , ZHU D W , NICHOLAS S , et al. Is traditional Chinese medicine "mainstream" in China? trends in traditional Chinese medicine health resources and their utilization in traditional Chinese medicine hospitals from 2004 to 2016. Evidence-Based Complementary and Alternative Medicine, 2020, 15, 103- 108.
|
4 |
ZHANG Y N , ZHAO J J , QIANG Y , et al. Improved heterogeneous data fusion and multi-scale feature selection method for lung cancer subtype classification. Concurrency and Computation: Practice and Experience, 2022, 34 (1): e6535.
doi: 10.1002/cpe.6535
|
5 |
QIN Y , MA Z R . A traditional Chinese medicine prescription recommendation method based on mutual information clustering. Journal of Physics: Conference Series, 2020, 1544 (1): 012065.
doi: 10.1088/1742-6596/1544/1/012065
|
6 |
SHI Q Y , TAN L Z , SENG L L , et al. Intelligent prescription-generating models of traditional Chinese medicine based on deep learning. World Journal of Traditional Chinese Medicine, 2021, 7 (3): 361- 369.
doi: 10.4103/wjtcm.wjtcm_54_21
|
7 |
YAO L , ZHANG Y , WEI B G , et al. A topic modeling approach for traditional Chinese medicine prescriptions. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1007- 1021.
doi: 10.1109/TKDE.2017.2787158
|
8 |
WANG X Y, ZHANG Y, WANG X L, et al. A knowledge graph enhanced topic modeling approach for herb recommendation[C]//Proceedings of International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2019: 709-724.
|
9 |
JI W D , ZHANG Y , WANG X L , et al. Latent semantic diagnosis in traditional Chinese medicine. World Wide Web, 2017, 20 (5): 1071- 1087.
|
10 |
LIN F , XIAHOU J B , XU Z X . TCM clinic records data mining approaches based on weighted-LDA and multi-relationship LDA model. Multimedia Tools and Applications, 2016, 75 (22): 14203- 14232.
|
11 |
LI W, SUN X, YANG Z. Exploration on generating traditional Chinese medicine prescriptions from symptoms with an end-to-end approach[EB/OL]. [2023-10-30]. https://arxiv.org/pdf/1801.09030.
|
12 |
RONG C T , LI X Y , SUN X M , et al. Chinese medicine prescription recommendation using generative adversarial network. IEEE Access, 2022, 10, 12219- 12228.
|
13 |
WANG Z Y, POON J, POON S. TCM Translator: a sequence generation approach for prescribing herbal medicines[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D. C., USA: IEEE Press, 2019: 2474-2480.
|
14 |
LI C J, LIU D, YANG K X, et al. Herb-Know: knowledge enhanced prescription generation for traditional Chinese medicine[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D. C., USA: IEEE Press, 2020: 1560-1567.
|
15 |
|
16 |
YANG Y , RAO Y L , YU M H , et al. Multi-layer information fusion based on graph convolutional network for knowledge-driven herb recommendation. Neural Networks, 2022, 146, 1- 10.
|
17 |
ZHOU W A , YANG K , ZENG J Y , et al. FordNet: recommending traditional Chinese medicine formula via deep neural network integrating phenotype and molecule. Pharmacological Research, 2021, 173, 105752.
|
18 |
LIU Z , LUO C Y , FU D Z , et al. A novel transfer learning model for traditional herbal medicine prescription generation from unstructured resources and knowledge. Artificial Intelligence in Medicine, 2022, 124, 102232.
|
19 |
ZHAO Z J , REN X T , SONG K , et al. PreGenerator: TCM prescription recommendation model based on retrieval and generation method. IEEE Access, 2023, 11, 103679- 103692.
|
20 |
LIU Z , ZHENG Z Y , GUO X W , et al. AttentiveHerb: a novel method for traditional medicine prescription generation. IEEE Access, 2019, 7, 139069- 139085.
|
21 |
HOU J X , SONG P , ZHAO Z J , et al. TCM prescription generation via knowledge source guidance network combined with herbal candidate mechanism. Computational and Mathematical Methods in Medicine, 2023, 31, 60- 67.
|
22 |
|
23 |
CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-10-30]. https://arxiv.org/abs/1412.3555.
|
24 |
|
25 |
|
26 |
|
27 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2021: 11106-11115.
|