[1] QAZVINIAN V, RADEV D R, ÖZGÜR A.Citation summarization through keyphrase extraction[C]//Proceedings of the 23rd International Conference on Computational Linguistics.New York, USA:ACM Press, 2010:895-903. [2] 祝超群.基于改进TextRank的中文文本摘要方法研究[D].武汉:武汉邮电科学研究院, 2021. ZHU C Q.Research on Chinese text summarization method based on improved TextRank[D].Wuhan:Wuhan Institute of Posts and Telecommunications, 2021.(in Chinese) [3] TANG Y X, HUANG W L, LIU Q, et al.QALink:enriching text documents with relevant Q&A site contents[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:1359-1368. [4] 周楠, 杜攀, 靳小龙, 等.面向舆情事件的子话题标签生成模型ET-TAG[J].计算机学报, 2018, 41(7):1490-1503. ZHOU N, DU P, JIN X L, et al.ET-TAG:a tag generation model for the sub-topics of public opinion events[J].Chinese Journal of Computers, 2018, 41(7):1490-1503.(in Chinese) [5] 邓权亮.基于全文检索的敏感信息检测系统的设计与实现[D].北京:北京邮电大学, 2021. DENG Q L.Design and implementation of sensitive information detection algorithm based on deep learning[D].Beijing:Beijing University of Posts and Telecommunications, 2021.(in Chinese) [6] 杜芳芳, 江恒.新高考改革政策的价值走向与主题变迁:基于政策文本的词频及共现分析[J].教育与考试, 2022(1):5-16. DU F F, JIANG H.The value trend and theme change of the new college entrance examination reform policy:analysis of word-frequency and co-occurrence based on policy tex[J].Education and Examinations, 2022(1):5-16.(in Chinese) [7] ALOMAR E A, LIU J Q, ADDO K, et al.On the documentation of refactoring types[J].Automated Software Engineering, 2022, 29(1):9. [8] 胡少虎, 张颖怡, 章成志.关键词提取研究综述[J].数据分析与知识发现, 2021, 5(3):45-59. HU S H, ZHANG Y Y, ZHANG C Z.Review of keyword extraction studies[J].Data Analysis and Knowledge Discovery, 2021, 5(3):45-59.(in Chinese) [9] PABBI K, SINDHU C, REDDY I S, et al.The use of transformer model in opinion summarisation[J].Webology, 2021, 18(5):1084-1095. [10] NIKULIN V, SHIBAIKIN S, SOKOLOVA M S.Application of machine learning techniques for automated classification and routing in ITIL library[J].Computer Science and Informatics, 2022, 2022(1):42-52. [11] CAMPOS R, MANGARAVITE V, PASQUALI A, et al.YAKE!Collection-independent automatic keyword extractor[C]//Proceedings of European Conference on Information Retrieval.Berlin, Germany:Springer, 2018:806-810. [12] HERINGS P J J J J, VAN DER LAAN G, TALMAN D J J.Measuring the power of nodes in digraphs[J].SSRN Electronic Journal, 2001, 23(7):602-637. [13] KLEINBERG J M.Authoritative sources in a hyperlinked environment[J].Journal of the ACM, 1999, 46(5):604-632. [14] PAGES L, BRIN S, MOTWANI R, et al.The PageRank citation ranking:bring order to the Web[EB/OL].[2022-03-01].http://www-db.stanford.edu/backrub/pageranksub. [15] XIONG A, LIU D R, TIAN H K, et al.News keyword extraction algorithm based on semantic clustering and word graph model[J].Tsinghua Science and Technology, 2021, 26(6):886-893. [16] WAN X J, XIAO J G.Single document keyphrase extraction using neighborhood knowledge[C]//Proceedings of National Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2008:855-860. [17] FLORESCU C, CARAGEA C.A position-biased PageRank algorithm for keyphrase extraction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.New York, USA:AAAI Press, 2017:4923-4924. [18] DANESH S, SUMNER T, MARTIN J H.SGRank:combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction[C]//Proceedings of the 4th Joint Conference on Lexical and Computational Semantics.Washington D.C., USA:IEEE Press, 2015:519-532. [19] DAS GOLLAPALLI S, CARAGEA C.Extracting keyphrases from research papers using citation networks[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.New York, USA:AAAI Press, 2014:1629-1635. [20] DUMAIS S T.Latent semantic analysis[J].Annual Review of Information Science and Technology, 2005, 38:188-230. [21] HOFMANN T.Probabilistic latent semantic indexing[C]//Proceedings of the 22nd ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 1999:50-57. [22] 周学广, 高飞, 孙艳.基于依存连接权VSM的子话题检测与跟踪方法[J].通信学报, 2013, 34(8):1-9. ZHOU X G, GAO F, SUN Y.Sub-topic detection and tracking based on dependency connection weights for vector space model[J].Journal on Communications, 2013, 34(8):1-9.(in Chinese) [23] TASCI S, GUNGOR T.LDA-based keyword selection in text categorization[C]//Proceedings of the 24th International Symposium on Computer and Information Sciences.Washington D.C., USA:IEEE Press, 2009:230-235. [24] BOUGOUIN A, BOUDIN F, DAILLE B.TopicRank:graph-based topic ranking for keyphrase extraction[C]//Proceedings of the 6th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2013:543-551. [25] LIU Z Y, HUANG W Y, ZHENG Y B, et al.Automatic keyphrase extraction via topic decomposition[C]//Proceedings of 2010 International Conference on Empirical Methods in Natural Language Processing.New York, USA:ACM Press, 2010:366-376. [26] TENEVA N, CHENG W.Salience rank:efficient keyphrase extraction with topic modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Washington D.C., USA:IEEE Press, 2017:326-331. [27] HIRCHOUA B, OUHBI B, FRIKH B.Topic modeling for short texts:a novel modeling method[M].Berlin, Germany:Springer, 2022. [28] LIU C X.The research and implementation of keyword extraction algorithm based on LDA[C]//Proceedings of the 3rd IEEE International Conference on Electronics and Communication.Washington D.C., USA:IEEE Press, 2022:457-469. [29] SONG Z.Subject extraction and keyword extraction from text[D].Torino, Italy:Politecnico di Torino, 2021. [30] LAVANYA V, RAMASUBBAREDDY S, GOVINDA K.Fuzzy keyword matching using N-gram and cryptographic approach over encrypted data in cloud[M].Singapore:[s.n.], 2020. [31] TANANTONG T, KREANGKRIWANICH S, LAOSEN N.Extraction of trend keywords from Thai twitters using N-gram word combination[C]//Proceedings of the 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.Washington D.C., USA:IEEE Press, 2020:320-323. [32] RAWAT R, MAHOR V, GARG B, et al.Analyzing newspaper articles for text-related data for finding vulnerable posts over the Internet that are linked to terrorist activities[J].International Journal of Information Security and Privacy, 2022, 16(1):1-14. [33] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2022-03-01].https://arxiv.org/abs/1301.3781. [34] PENNINGTON J, SOCHER R, MANNING C.GloVe:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Washington D.C., USA:IEEE Press, 2014:7236-1247. [35] PAPAGIANNOPOULOU E, TSOUMAKAS G.Local word vectors guiding keyphrase extraction[J].Information Processing & Management, 2018, 54(6):888-902. [36] LAU J H, BALDWIN T.An empirical evaluation of doc2vec with practical insights into document embedding generation[EB/OL].[2022-03-01].https://arxiv.org/abs/1607.05368. [37] PAGLIARDINI M, GUPTA P, JAGGI M.Unsupervised learning of sentence embeddings using compositional n-gram features[EB/OL].[2022-03-01].https://arxiv.org/abs/1703.02507. [38] BENNANI-SMIRES K, MUSAT C, HOSSMANN A, et al.Simple unsupervised keyphrase extraction using sentence embeddings[EB/OL].[2022-03-01].https://arxiv.org/abs/1801.04470. [39] WANG J B, PENG H.Keyphrases extraction from Web document by the least squares support vector machine[C]//Proceedings of 2005 IEEE/WIC/ACM International Conference on Web Intelligence.Washington D.C., USA:IEEE Press, 2005:293-296. [40] HULTH A.Improved automatic keyword extraction given more linguistic knowledge[C]//Proceedings of 2003 Conference on Empirical Methods in Natural Language Processing.New York, USA:ACM Press, 2003:216-223. [41] DING Z, ZHANG Q, HUANG X J.Keyphrase extraction from online news using binary integer programming[C]//Proceedings of the 5th International Joint Conference on Natural Language Processing.Washington D.C., USA:IEEE Press, 2011:435-447. [42] SARKAR K, NASIPURI M, GHOSE S.Machine learning based keyphrase extraction:comparing decision trees, Naïve Bayes, and artificial neural networks[J].Journal of Information Processing Systems, 2012, 8(4):693-712. [43] 朱咸军, 洪宇, 黄雅琳, 等.基于HMM的算法优化在中文分词中的应用[J].金陵科技学院学报, 2019, 35(3):1-7. ZHU X J, HONG Y, HUANG Y L, et al.Application in Chinese segmentation based on optimization-HMM algorithms[J].Journal of Jinling Institute of Technology, 2019, 35(3):1-7.(in Chinese) [44] 吴灿丽.基于改进HMM下自动摘要的生成[D].杭州:浙江理工大学, 2017. WU C L.Generation of automatic summarization based on improved HMM[D].Hangzhou:Zhejiang Sci-Tech University, 2017.(in Chinese) [45] 侯丽微, 胡珀, 曹雯琳.主题关键词信息融合的中文生成式自动摘要研究[J].自动化学报, 2019, 45(3):530-539. HOU L W, HU P, CAO W L.Automatic Chinese abstractive summarization with topical keywords fusion[J].Acta Automatica Sinica, 2019, 45(3):530-539.(in Chinese) [46] 孙师尧, 妙全兴.基于改进HMM的半结构化文本信息抽取算法研究[J].电子科技, 2014, 27(10):111-114, 118. SUN S Y, MIAO Q X.Algorithm research for semi-structured text information extraction based on hidden Markov model[J].Electronic Science and Technology, 2014, 27(10):111-114, 118.(in Chinese) [47] MO T, YU Y K, SALAMEH M, et al.Neural architecture search for keyword spotting[C]//Proceedings of IEEE ISCAʼ20.Washington D.C., USA:IEEE Press, 2020:135-149. [48] ZHANG C Z, WANG H L, LIU Y, et al.Automatic keyword extraction from documents using conditional random fields[J].Journal of Computational Information Systems, 2008, 4(3):1169-1180. [49] SHARMA E, YE G L, WEI W N, et al.Adaptation of RNN transducer with text-to-speech technology for keyword spotting[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2020:7484-7488. [50] SONG H J, KIM A Y, PARK S B.Translation of natural language query into keyword query using a RNN encoder-decoder[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2017:965-968. [51] DUAN X Y, YING S, CHENG H L, et al.OILog:an online incremental log keyword extraction approach based on MDP-LSTM neural network[J].Information Systems, 2021, 95:101618. [52] ABRAHAM L, BONATO A, NAZARETH A.Small number of communities in Twitter keyword networks[M].Berlin, Germany:Springer, 2022. [53] BASALDELLA M, ANTOLLI E, SERRA G, et al.Bidirectional LSTM recurrent neural network for keyphrase extraction[C]//Proceedings of Conference on Computer and Information Science.Berlin, Germany:Springer, 2017:180-187. [54] WANG Y, ZHANG J.Keyword extraction from online product reviews based on bi-directional LSTM recurrent neural network[C]//Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management.Washington D.C., USA:IEEE Press, 2018:2241-2245. [55] ZENG M J, XIAO N F.Effective combination of DenseNet and BiLSTM for keyword spotting[J].IEEE Access, 2019, 7:10767-10775. [56] MOMENI L, AFOURAS T, STAFYLAKIS T, et al.Seeing wake words:audio-visual keyword spotting[EB/OL].[2022-03-01].https://arxiv.org/abs/2009.01225. [57] BIN C, SHUICAI S, DU Y, et al.Keyword extraction for journals based on part-of-speech and BiLSTM-CRF combined model[J].Computer Science, 2020, 5(3):101-108. [58] ALZAIDY R, CARAGEA C.Bi-LSTM-CRF sequence labeling for keyphrase extraction from scholarly documents[C]//Proceedings of World Wide Web Conference.Washington D.C., USA:IEEE Press, 2019:2551-2557. [59] JUSTYNA J, SARZYNSKA W.Detecting formal thought disorder by deep contextualized word representations[J].Psychiatry Research, 2021, 304:114135. [60] ZHANG X, ZHAO J, LECUN Y.Character-level convolutional networks for text classification[EB/OL].[2022-03-01].https://arxiv.org/abs/1509.01626. [61] YI D, JIA Z, XIN L, et al.Short text representation model construction method based on novel semantic aggregation technology[M].Berlin, Germany:Springer, 2019. [62] POLATO M, DEMCHENKO D, KUANYSHKEREYEV A, et al.Efficient multilingual deep learning model for keyword categorization[C]//Proceedings of IEEE Symposium on Computational Intelligence.Washington D.C., USA:IEEE Press, 2022:1-8. [63] TANG M, GANDHI P, KABIR M A, et al.Progress notes classification and keyword extraction using attention-based deep learning models with BERT[EB/OL].[2022-03-01].https://arxiv.org/abs/1910.05786. [64] YANG Y R, QIAO Y F, SHAO J J, et al.Lightweight composite re-ranking for efficient keyword search with BERT[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2022:1234-1244. [65] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all You need[EB/OL].[2022-03-01].https://arxiv.org/abs/1706.03762. [66] NURIFAN F, SARNO R, SUNGKONO K R J, et al.Aspect based sentiment analysis for restaurant reviews using hybrid ELMoWikipedia and hybrid expanded opinion lexicon-SentiCircle[J].International Journal of Intelligent Engineering and Systems, 2019, 12(6):47-58. [67] LIU M Y, TU Z Y, ZHANG T, et al.LTP:a new active learning strategy for CRF-based named entity recognition[J].Neural Processing Letters, 2022, 54(3):2433-2454. [68] SOUZA F, NOGUEIRA R, LOTUFO R.Portuguese named entity recognition using BERT-CRF[EB/OL].[2022-03-01].https://arxiv.org/abs/1909.10649. [69] LIU M Y, TU Z Y, WANG Z, et al.LTP:a new active learning strategy for Bert-based named entity recognition[EB/OL].[2022-03-01].https://arxiv.org/abs/2001.02524v2. [70] MAO J, LIU W.Hadoken:a BERT-CRF model for medical document anonymization[C]//Proceedings of IEEE SEPLNʼ19.Washington D.C., USA:IEEE Press, 2019:445-458. [71] 黄先珍, 杨玉珍, 刘培玉.信息过滤中基于统计与规则的关键词抽取研究[J].计算机工程, 2012, 38(2):57-59. HUANG X Z, YANG Y Z, LIU P Y.Study of keywords extraction based on statistics and rules in information filtering[J].Computer Engineering, 2012, 38(2):57-59.(in Chinese) [72] 牛永洁, 田成龙.融合多因素的TFIDF关键词提取算法研究[J].计算机技术与发展, 2019, 29(7):80-83. NIU Y J, TIAN C L.Research on TFIDF keyword extraction algorithm based on multiple factors[J].Computer Technology and Development, 2019, 29(7):80-83.(in Chinese) [73] 戴玉珠.基于词嵌入和多特征融合的自动关键词抽取算法[D].广州:广东技术师范大学, 2019. DAI Y Z.Automatic keyword extraction algorithms based on word embedding and multiple features fusion[D].Guangzhou:Guangdong Polytechnic Normal University, 2019.(in Chinese) [74] KRAPIVIN M, MARCHESE M.Large dataset for keyphrase extraction[EB/OL].[2022-03-01].https://www.researchgate.net/publication/30531371. [75] VOORHEES E M.The TREC question answering track[J].Natural Language Engineering, 2001, 7(4):361-378. [76] SONG Y Q, PAN S M, LIU S X, et al.Topic and keyword re-ranking for LDA-based topic modeling[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2009:1757-1760. [77] HE X F, CAI D, NIYOGI P.Laplacian score for feature selection[C]//Proceedings of NIPSʼ05.Cambridge, USA:MIT Press, 2005:18-26. [78] BUCKLEY C, VOORHEES E M.Retrieval evaluation with incomplete information[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2004:25-32. [79] KIM S N, MEDELYAN O, KAN M Y, et al.Automatic keyphrase extraction from scientific articles[J].Language Resources and Evaluation, 2013, 47(3):723-742. [80] PAROUBEK P, ZWEIGENBAUM P, FOREST D, et al.Controlled and free indexing of scientific papers[C]//Proceedings of DEFTʼ12.Washington D.C., USA:IEEE Press, 2012:369-382. [81] MARUJO L, GERSHMAN A, CARBONELL J G, et al.Supervised topical key phrase extraction of news stories using crowdsourcing, light filtering and co-reference normalization[EB/OL].[2022-03-01].https://arxiv.org/abs/1306.4886. [82] KIM S N, MEDELYAN O, KAN M Y, et al.Automatic keyphrase extraction from scientific articles[J].Language Resources and Evaluation, 2013, 47(3):723-742. [83] NGUYEN T D, KAN M Y.Keyphrase extraction in scientific publications[C]//Proceedings of International Conference on Asian Digital Libraries.[S.1.]:Springer, 2007:317-326. [84] SARKAR K, NASIPURI M, GHOSE S.Machine learning based keyphrase extraction:comparing decision trees, Naïve Bayes, and artificial neural networks[J].Journal of Information Processing Systems, 2012, 8(4):693-712. [85] AQUINO G, LANZARINI L.Keyword identification in Spanish documents using neural networks[J].International Journal of Computer Science, 2015, 15(2):55-60. [86] CATALDI Z, FIGUEROA N, MÉNDEZ P, et al.Congreso Argentino en ciencias de la computacion[EB/OL].[2022-03-01].http://sedici.unlp.edu.ar/bitstream/handle/10915/22529/Documento_completo.pdf?sequence=1. [87] LAIRD J E, HUCKA M, HUFFMAN, S B, et al.Distributed and parallel processing for the embgrid project[C]//Proceedings of Symposium on Computer Science Researchers.Washington D.C., USA:IEEE Press, 2015:1265-1578. [88] FISCHER A, FRINKEN V, BUNKE H, et al.Improving HMM-based keyword spotting with character language models[C]//Proceedings of the 12th International Conference on Document Analysis and Recognition.Washington D.C., USA:IEEE Press, 2013:506-510. [89] BEALE A D.Grammatical analysis by computer of the Lancaster-Oslo/Bergen(LOB) corpus of British English texts[C]//Proceedings of the 23rd Annual Meeting on Association for Computational Linguistics.New York, USA:ACM Press, 1985:293-298. [90] DAS GOLLAPALLI S, LI X L, YANG P.Incorporating expert knowledge into keyphrase extraction[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.New York, USA:AAAI Press, 2017:3180-3187. [91] CARAGEA C, BULGAROV F A, GODEA A, et al.Citation-enhanced keyphrase extraction from research papers:a supervised approach[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2014:159-175. [92] LI H J, COUNCILL I G, BOLELLI L, et al.CiteSeerX:a scalable autonomous scientific digital library[C]//Proceedings of the 1st International Conference on Scalable Information Systems.New York, USA:ACM Press, 2006:18-29. [93] ZHANG Q, WANG Y, GONG Y Y, et al.Keyphrase extraction using deep recurrent neural networks on twitter[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2016:567-579. [94] MENG R, ZHAO S Q, HAN S G, et al.Deep keyphrase generation[EB/OL].[2022-03-01].https://arxiv.org/abs/1704.06879. [95] 王亚楠.基于对抗学习的跨领域关键词提取方法研究[D].合肥:中国科学技术大学, 2020. WANG Y N.Exploiting topic-based adversarial neural network for cross-domain keyphrase extraction[D].Hefei:University of Science and Technology of China, 2020.(in Chinese) [96] LUHN H P.A statistical approach to mechanized encoding and searching of literary information[J].IBM Journal of Research and Development, 1957, 1(4):309-317. [97] TIAN X J D A, DISCOVERY K.Study on keyword extraction using word position weighted TextRank[J].Data Analysis and Knowledge Discovery, 2013, 29(9):30-34. [98] KONG S Y, ZHU P, YANG Q, et al.HSCKE:a hybrid supervised method for Chinese keywords extraction[C]//Proceedings of the 3rd International Conference on Algorithms, Computing and Artificial Intelligence.New York, USA:ACM Press, 2020:1-7. [99] LI J Z, FAN Q N, ZHANG K.Keyword extraction based on TF/IDF for Chinese news document[J].Wuhan University Journal of Natural Sciences, 2007, 12(5):917-921. [100] 徐文海, 温有奎.一种基于TFIDF方法的中文关键词抽取算法[J].情报理论与实践, 2008, 31(2):298-302. XU W H, WEN Y K.A Chinese keyword extraction algorithm based on TFIDF method[J].Information Studies:Theory & Application, 2008, 31(2):298-302.(in Chinese) [101] SALTON G, BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management, 1988, 24(5):513-523. [102] 李跃鹏, 金翠, 及俊川.基于Word2Vec的关键词提取算法[J].科研信息化技术与应用, 2015, 6(4):54-59. LI Y P, JIN C, JI J C.A keyword extraction algorithm based on Word2Vec[J].E-Science Technology & Application, 2015, 6(4):54-59.(in Chinese) [103] SULEIMAN D, AWAJAN A A, AL ETAIWI W.Arabic text keywords extraction using Word2Vec[C]//Proceedings of the 2nd International Conference on New Trends in Computing Sciences.Washington D.C., USA:IEEE Press, 2019:1-7. [104] 谭红叶, 李宣影, 刘蓓.基于外部知识和层级篇章表示的阅读理解方法[J].中文信息学报, 2020, 34(4):85-91. TAN H Y, LI X Y, LIU B.Reading comprehension based on external knowledge and hierarchical discourse representation[J].Journal of Chinese Information Processing, 2020, 34(4):85-91.(in Chinese) [105] 曲昭伟, 吴春叶, 王晓茹.半监督自训练的方面提取[J].智能系统学报, 2019, 14(4):635-641. QU Z W, WU C Y, WANG X R.Aspects extraction based on semi-supervised self-training[J].CAAI Transactions on Intelligent Systems, 2019, 14(4):635-641.(in Chinese) |