1 |
KALINYAK J E , BERG W A , SCHILLING K , et al. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41 (2): 260- 275.
doi: 10.1007/s00259-013-2553-1
|
2 |
FLANAGAN F L , DEHDASHTI F , SIEGEL B A . PET in breast cancer. Seminars in Nuclear Medicine, 1998, 28 (4): 290- 302.
doi: 10.1016/S0001-2998(98)80034-2
|
3 |
GARCÍA HERNÁNDEZ T , VICEDO GONZÁLEZ A , FERRER REBOLLEDA J , et al. Performance evaluation of a high resolution dedicated breast PET scanner. Medical Physics, 2016, 43 (5): 2261- 2272.
doi: 10.1118/1.4945271
|
4 |
SURTI S , KARP J S . Design considerations for a limited angle, dedicated breast, TOF PET scanner. Physics in Medicine and Biology, 2008, 53 (11): 2911- 2921.
doi: 10.1088/0031-9155/53/11/010
|
5 |
CHEN L , LIU K , ZHAO X , et al. Habitat imaging-based 18F-FDG PET/CT radiomics for the preoperative discrimination of non-small cell lung cancer and benign inflammatory diseases. Frontiers in Oncology, 2021, 11, 759897.
doi: 10.3389/fonc.2021.759897
|
6 |
LEE D H , PARK J E , KIM N , et al. Tumor habitat analysis using longitudinal physiological MRI to predict tumor recurrence after stereotactic radiosurgery for brain metastasis. Korean Journal of Radiology, 2023, 24 (3): 235- 246.
doi: 10.3348/kjr.2022.0492
|
7 |
DU T , ZHAO H . Habitat analysis of breast cancer-enhanced MRI reflects BRCA1 mutation determined by immunohistochemistry. BioMed Research International, 2022, 2022, 9623173.
doi: 10.1155/2022/9623173
|
8 |
程辰, 李雪平, 赵红艳. 超声影像组学在乳腺癌新辅助化疗中的应用进展. 医学影像学杂志, 2023, 33 (5): 878- 881.
|
|
CHEN C , LI X P , ZHAO H Y . Progress in the application of ultrasonography in neoadjuvant chemotherapy for breast cancer. Journal of Medical Imaging, 2023, 33 (5): 878- 881.
|
9 |
LÜ J , CHEN X , LIU X , et al. Imbalanced data correction based PET/CT radiomics model for predicting lymph node metastasis in clinical stage T1 lung adenocarcinoma. Frontiers in Oncology, 2022, 12, 788968.
doi: 10.3389/fonc.2022.788968
|
10 |
CARVALHO E D , DA SILVA NETO O P , MATHEW M J , et al. An approach to the prediction of breast cancer response to neoadjuvant chemotherapy based on tumor habitats in DCE-MRI images. Expert Systems with Applications, 2023, 234, 121081.
doi: 10.1016/j.eswa.2023.121081
|
11 |
MU W , LIANG Y , HALL L O , et al. 18F-FDG PET/CT habitat radiomics predicts outcome of patients with cervical cancer treated with chemoradiotherapy. Radiology: Artificial Intelligence, 2020, 2 (6): e190218.
doi: 10.1148/ryai.2020190218
|
12 |
LI P L , WANG X Y , XU C R , et al. 18F-FDG PET/CT radiomic predictors of pathologic complete response (PCR) to neoadjuvant chemotherapy in breast cancer patients. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47 (5): 1116- 1126.
doi: 10.1007/s00259-020-04684-3
|
13 |
MOFTAH H M , AZAR A T , AL-SHAMMARI E T , et al. Adaptive k-means clustering algorithm for MR breast image segmentation. Neural Computing and Applications, 2014, 24 (7): 1917- 1928.
|
14 |
CHITALIA R , VISWANATH V , PANTEL A R , et al. Functional 4-D clustering for characterizing intratumor heterogeneity in dynamic imaging: evaluation in FDG PET as a prognostic biomarker for breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 (12): 3990- 4001.
doi: 10.1007/s00259-021-05265-8
|
15 |
赵青, 欧阳祖彬. MRI影像组学在乳腺癌新辅助化疗中的应用进展. 磁共振成像, 2023, 14 (7): 171- 175.
|
|
ZHAO Q , OUYANG Z B . Application of MRI imaging in neoadjuvant chemotherapy for breast cancer. Chinese Journal of Magnetic Resonance Imaging, 2023, 14 (7): 171- 175.
|
16 |
王瑶, 聂芳. 基于超声的人工智能在乳腺癌新辅助化疗疗效预测中的研究进展. 兰州大学学报(医学版), 2023, 49 (9): 79-83, 89.
|
|
WANG Y , NIE F . Research progress in the prediction of efficacy of breast cancer neoadjuvant chemotherapy based on ultrasound and artificial intelligence. Journal of Lanzhou University (Medical Sciences), 2023, 49 (9): 79-83, 89.
|
17 |
GAO K , SU J , JIANG Z , et al. Dual-branch Combination Network (DCN): towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Medical Image Analysis, 2021, 67, 101836.
doi: 10.1016/j.media.2020.101836
|
18 |
HATAMIKIA S , GEORGE G , SCHWARZHANS F , et al. Breast MRI radiomics and machine learning-based predictions of response to neoadjuvant chemotherapy-How are they affected by variations in tumor delineation?. Computational and Structural Biotechnology Journal, 2024, 23, 52- 63.
doi: 10.1016/j.csbj.2023.11.016
|
19 |
杨柳, 张明坤, 季福庆, 等. HER-2阳性乳腺癌新辅助化疗疗效影响因素分析及相关预后模型的构建. 现代肿瘤医学, 2023, 31 (11): 2037- 2041.
|
|
YANG L , ZHANG M K , JI F Q , et al. The analysis of the factors affecting pathological complete response of HER-2 positive breast cancer patients after neoadjuvant chemotherapy and the construction of related model. Journal of Modern Oncology, 2023, 31 (11): 2037- 2041.
|
20 |
WANG X , XU C , GRZEGORZEK M , et al. Habitat radiomics analysis of PET/CT imaging in high-grade serous ovarian cancer: application to Ki-67 status and progression-free survival. Frontiers in Physiology, 2022, 13, 948767.
doi: 10.3389/fphys.2022.948767
|
21 |
GROHEUX D , ESPIÉ M , GIACCHETTI S , et al. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology, 2013, 266 (2): 388- 405.
doi: 10.1148/radiol.12110853
|
22 |
WU J , GENSHEIMER M F , ZHANG N , et al. Tumor subregion evolution-based imaging features to assess early response and predict prognosis in oropharyngeal cancer. Journal of Nuclear Medicine, 2020, 61 (3): 327- 336.
doi: 10.2967/jnumed.119.230037
|
23 |
KIM M , PARK J E , KIM H S , et al. Spatiotemporal habitats from multiparametric physiologic MRI distinguish tumor progression from treatment-related change in post-treatment glioblastoma. European Radiology, 2021, 31 (8): 6374- 6383.
doi: 10.1007/s00330-021-07718-y
|
24 |
KAZEROUNI A S , HORMUTH D A , DAVIS T , et al. Quantifying tumor heterogeneity via MRI habitats to characterize microenvironmental alterations in HER2 + breast cancer. Cancers, 2022, 14 (7): 1837.
doi: 10.3390/cancers14071837
|
25 |
LIU Y , WANG Y , WANG Y , et al. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: a multicentre, retrospective cohort study. EClinicalMedicine, 2022, 52, 101562.
doi: 10.1016/j.eclinm.2022.101562
|
26 |
DUBEY A K , GUPTA U , JAIN S . Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International Journal of Computer Assisted Radiology and Surgery, 2016, 11 (11): 2033- 2047.
doi: 10.1007/s11548-016-1437-9
|
27 |
SHOREWALA V. Anomaly detection and improvement of clusters using enhanced K-means algorithm[C]//Proceedings of the 5th International Conference on Computer, Communication and Signal Processing. Washington D.C., USA: IEEE Press, 2021: 115-121.
|
28 |
AVRIL S , MUZIC R F , PLECHA D , et al. 18F-FDG PET/CT for monitoring of treatment response in breast cancer. Journal of Nuclear Medicine, 2016, 57, 473- 479.
doi: 10.2967/jnumed.115.163972
|
29 |
SILVA L F , SEQUEIROS G O , SANTOS M L , et al. Thermal signal analysis for breast cancer risk verification. Studies in Health Technology and Informatics, 2015, 216, 746- 750.
|
30 |
|
31 |
LIN H Q , JI Z Z . Breast cancer prediction based on K-means and SOM hybrid algorithm. Journal of Physics: Conference Series, 2020, 1624 (4): 042012.
doi: 10.1088/1742-6596/1624/4/042012
|
32 |
BEIG N , KHORRAMI M , ALILOU M , et al. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology, 2019, 290 (3): 783- 792.
doi: 10.1148/radiol.2018180910
|
33 |
SELVARAJU R R , COGSWELL M , DAS A , et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128 (2): 336- 359.
doi: 10.1007/s11263-019-01228-7
|
34 |
SUK K T . Hepatic venous pressure gradient: clinical use in chronic liver disease. The Journal of Allergy and Clinical Immunology, 2014, 20 (1): 6- 14.
|