作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (4): 314-326. doi: 10.19678/j.issn.1000-3428.0068991

• 开发研究与工程应用 • 上一篇    下一篇

带有充电约束的多AGV柔性作业车间调度

李晓辉, 资湖海, 徐坷鑫, 牛樱清*(), 赵毅, 董媛   

  1. 长安大学电子与控制工程学院, 陕西 西安 710064
  • 收稿日期:2023-12-08 出版日期:2025-04-15 发布日期:2024-05-29
  • 通讯作者: 牛樱清
  • 基金资助:
    国家重点研发计划(211224210062); 工信部国家物联网重点研发项目(2019ZDLGY03-01)

Multi-AGV Flexible Job Shop Scheduling with Charging Constraints

LI Xiaohui, ZI Huhai, XU Kexin, NIU Yingqing*(), ZHAO Yi, DONG Yuan   

  1. School of Electronics and Control Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
  • Received:2023-12-08 Online:2025-04-15 Published:2024-05-29
  • Contact: NIU Yingqing

摘要:

在制造单元不再唯一且加工时间不确定的柔性作业车间调度中, 多自动导向小车(AGV)发挥着重要作用。然而当AGV执行任务时间过长、消耗电量较多时, 充电事件成为必须考虑的因素。该研究旨在解决考虑电池约束条件下的多AGV的柔性车间作业调度问题。综合考虑制造单元加工时间、AGV小车搬运时间以及AGV小车充电情况等约束条件, 以优化最大完工时间为目标。针对此问题建立数学模型, 将文化基因算法和自适应变邻域搜索算法相结合提出一种混合文化基因算法。该算法采用文化基因算法作为框架, 并引入基于析取图的关键路径方法, 以解决制造单元和AGV小车滞空率高的问题。同时, 为了提高算法的寻优能力, 避免陷入局部最优解, 利用自适应变邻域搜索对当前迭代中的最优解进行改进。针对模型特点, 设计多种打破重组的邻域结构, 以实现算法求解最优值的目标。仿真实验结果表明, 该算法具有寻找最优解的能力且整体性能优于所对比的算法, 验证了该算法的有效性。

关键词: 柔性作业车间调度, 自动导向小车, 充电, 基因算法, 自适应变邻域搜索算法

Abstract:

In flexible job shop scheduling, where manufacturing cells are no longer the only option and processing time is uncertain, multiple Automated Guided Vehicles (AGVs) play an important role. However, charging becomes a crucial factor when an AGV consumes excessive power or takes too long to complete its tasks. This study aims to solve the Flexible Job Shop Scheduling Problem (FJSP) involving multiple AGVs while considering battery constraints. This study comprehensively considers constraints such as manufacturing unit processing time, AGV transportation time, and AGV charging status with the goal of optimizing the maximum completion time. A mathematical model is established for this problem, and a hybrid Memetic Algorithm (MA) combining MA with an adaptive variable neighborhood search algorithm is proposed. The algorithm utilizes a cultural genetic algorithm as a framework and introduces a critical path method based on a disjunctive graph to solve the problem of high idle rates of manufacturing units and AGVs. Additionally, to improve the algorithm's search capability and avoid becoming trapped in local optimal solutions, an adaptive variable neighborhood search is used to enhance the best solution of the current iteration. Multiple neighborhood structures that break recombination are designed to find the optimal value. The simulation results show that the algorithm can find the optimal solution and has a better overall performance than other algorithms, verifying its effectiveness.

Key words: flexible job shop scheduling, Automated Guided Vehicle(AGV), charging, Memetic Algorithm(MA), adaptive variable neighborhood search algorithm