[1] QU P, YANG L, ZHENG W M, et al. A review of basic software for brain-inspired computing[J]. CCF Transactions on High Performance Computing, 2022, 4(1):34-42. [2] 张铁林,徐波.脉冲神经网络研究现状及展望[J].计算机学报, 2021, 44(9):1767-1785. ZHANG T L, XU B. Research advances and perspectives on spiking neural networks[J]. Chinese Journal of Computers, 2021, 44(9):1767-1785.(in Chinese) [3] GEWALTIG M O, DIESMANN M. NEST (NEural Simulation Tool)[J]. Scholarpedia, 2007, 2(4):1430. [4] STIMBERG M, BRETTE R, GOODMAN D F. Brian 2, an intuitive and efficient neural simulator[J]. eLife, 2019, 8:e47314. [5] JI Y, ZHANG Y, LI S, et al. NEUTRAMS:neural network transformation and co-design under neuromorphic hardware constraints[EB/OL].[2023-08-05] . https://ieeexplore.ieee.org/document/7783724. [6] JORDAN J, IPPEN T, HELIAS M, et al. Extremely scalable spiking neuronal network simulation code:from laptops to exascale computers[J]. Frontiers in Neuroinformatics, 2018, 12:2. [7] PRONOLD J, JORDAN J, WYLIE B J N, et al. Routing brain traffic through the von Neumann bottleneck:parallel sorting and refactoring[J]. Frontiers in Neuroinformatics, 2021, 15:785068. [8] BAUTEMBACH D, OIKONOMIDIS I, ARGYROS A. Multi-GPU SNN simulation with static load balancing[EB/OL].[2023-08-05] . https://ieeexplore.ieee.org/document/9533921. [9] 栗学磊,朱效民,魏彦杰,等.神威太湖之光加速计算在脑神经网络模拟中的应用[J].计算机学报, 2020, 43(6):1025-1037. LI X L, ZHU X M, WEI Y J, et al. Application of Sunway TaihuLight accelerating in brain neural network simulation[J]. Chinese Journal of Computers, 2020, 43(6):1025-1037.(in Chinese) [10] ALBERS J, PRONOLD J, KURTH A C, et al. A modular workflow for performance benchmarking of neuronal network simulations[J]. Frontiers in Neuroinformatics, 2022, 16:837549. [11] FERNANDEZ-MUSOLES C, COCA D, RICHMOND P. Communication sparsity in distributed spiking neural network simulations to improve scalability[J]. Gene, 2019, 13:19. [12] BARCHI F, URGESE G, MACII E, et al. Mapping spiking neural networks on multi-core neuromorphic platforms:problem formulation and performance analysis[EB/OL].[2023-08-05] . https://link.springer.com/chapter/10.1007/978-3-030-23425-6_9. [13] TIDDIA G, GOLOSIO B, ALBERS J, et al. Fast simulation of a multi-area spiking network model of macaque cortex on an MPI-GPU cluster[J]. Frontiers in Neuroinformatics, 2022, 16:883333. [14] BARCHI F, URGESE G, MACII E, et al. Work-in-progress:impact of graph partitioning on SNN placement for a multi-core neuromorphic architecture[EB/OL].[2023-08-05] . https://ieeexplore.ieee.org/document/8516831. [15] KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1):359-392. [16] LI S M, GUO S S, ZHANG L M, et al. SNEAP:a fast and efficient toolchain for mapping large-scale spiking neural network onto NoC-based neuromorphic platform[EB/OL].[2023-08-05] . https://dl.acm.org/doi/abs/10.1145/3386263.3406900. [17] PARK J, YU T, JOSHI S, et al. Hierarchical address event routing for reconfigurable large-scale neuromorphic systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10):2408-2422. [18] GALLUPPI F, DAVIES S, RAST A, et al. A hierachical configuration system for a massively parallel neural hardware platform[C]//Proceedings of the 9th Conference on Computing Frontiers. New York,USA:ACM Press,2012:183-192. [19] LEE M K F, CUI Y N, SOMU T, et al. A system-level simulator for RRAM-based neuromorphic computing chips[J]. ACM Transactions on Architecture and Code Optimization, 2019, 15(4):1-24. [20] BALAJI A, CATTHOOR F, DAS A, et al. Mapping spiking neural networks to neuromorphic hardware[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019,28(1):76-86. [21] FURBER S B, LESTER D R, PLANA L A, et al. Overview of the SpiNNaker system architecture[J]. IEEE Transactions on Computers, 2013, 62(12):2454-2467. [22] 华夏,朱铮皓,徐聪,等.基于精准通信建模的脉冲神经网络工作负载自动映射器[J].计算机应用, 2023, 43(3):827-834. HUA X, ZHU Z H, XU C, et al. Workload automatic mapper for spiking neural network based on precise communication modeling[J]. Journal of Computer Applications, 2023, 43(3):827-834.(in Chinese) [23] TRENSCH G, MORRISON A. A system-on-chip based hybrid neuromorphic compute node architecture for reproducible hyper-real-time simulations of spiking neural networks[J]. Frontiers in Neuroinformatics, 2022, 16:884033. [24] DEVECI M, KAYA K, UÇAR B, et al. Hypergraph partitioning for multiple communication cost metrics:model and methods[J]. Journal of Parallel and Distributed Computing, 2015, 77:69-83. [25] QU P, LIN H, PANG M, et al. ENLARGE:an efficient SNN simulation framework on GPU clusters[J].IEEE Transactions on Parallel and Distributed Systems:A Publication of the IEEE Computer Society, 2023(9):34. [26] FARAJ M F. Streaming, local, and multi-level (hyper) graph decomposition[EB/OL].[2023-08-05] . https://arxiv.org/abs/2308.15617. [27] LIU L T, KUO M T, HUANG S C, et al. A gradient method on the initial partition of Fiduccia-Mattheyses algorithm[EB/OL].[2023-08-05] . https://www.cs.york.ac.uk/rts/docs/SIGDA-Compendium-1994-2004/papers/1995/iccad95/pdffiles/03d_3.pdf. [28] YAN B C, XIAO L M, QIN G J, et al. QTMS:a quadratic time complexity topology-aware process mapping method for large-scale parallel applications on shared HPC system[J]. Parallel Computing, 2020, 94:102637. [29] VON KIRCHBACH K, SCHULZ C, TRÄFF J L. Better process mapping and sparse quadratic assignment[J]. ACM Journal of Experimental Algorithmics, 2020, 25:1-19. [30] TAILLARD E. Robust taboo search for the quadratic assignment problem[J]. Parallel Computing, 1991, 17(4/5):443-455. [31] POTJANS T C, DIESMANN M. The cell-type specific cortical microcircuit:relating structure and activity in a full-scale spiking network model[J]. Cerebral Cortex, 2014, 24(3):785-806. [32] SCHMIDT M, BAKKER R, HILGETAG C C, et al. Multi-scale account of the network structure of macaque visual cortex[J]. Brain Structure and Function, 2018, 223(3):1409-1435. |