作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (6): 266-274. doi: 10.19678/j.issn.1000-3428.0069356

• 移动互联与通信技术 • 上一篇    下一篇

多天线无人机视频通信中的节能资源分配策略

杨莉斌, 詹成*(), 李婷婷, 廖婧睿   

  1. 西南大学计算机与信息科学学院, 重庆400715
  • 收稿日期:2024-02-05 出版日期:2025-06-15 发布日期:2024-06-19
  • 通讯作者: 詹成
  • 基金资助:
    国家自然科学基金(62172339)

Energy-Efficient Resource Allocation Strategies in Multi-Antenna UAV Video Communication

YANG Libin, ZHAN Cheng*(), LI Tingting, LIAO Jingrui   

  1. School of Computer and Information Science, Southwest University, Chongqing 400715, China
  • Received:2024-02-05 Online:2025-06-15 Published:2024-06-19
  • Contact: ZHAN Cheng

摘要:

凭借移动便捷、部署灵活的特点, 无人机(UAV)通信成为满足下一代蜂窝用户需求的有效技术。利用UAV捕获视频并通过边缘计算对视频进行处理, 可以为多用户提供高质量的视频服务。考虑一种多天线固定翼UAV视频传输系统, 通过合理规划UAV轨迹, 利用波束成形技术将每个传输信号引导到至用户端的最佳路径上, 从而降低能耗并提高接收信号的强度。将上述要求建模为一个非凸问题, 这个问题需要联合优化UAV轨迹、飞行时间、传输波束成形以及计算资源分配, 从而在满足用户服务质量(QoS)要求的同时, 最小化UAV总能耗。为了解决该问题, 提出一种两阶段算法: 在第一阶段, 利用路径离散化方法、交替优化技术以及连续凸逼近(SCA)技术, 最小化UAV的推进能耗; 在第二阶段, 采用路径离散化方法和SCA技术来最小化UAV的通信和计算能耗。仿真结果表明, 相较于基准方案, 该算法在保证视频质量的同时, 能够明显降低UAV的能耗, 具有很高的效率和实用性。

关键词: 无人机, 多天线, 视频流, 边缘计算, 服务质量, 能耗

Abstract:

The convenient mobility and flexible deployment of Unmanned Aerial Vehicle (UAV) communication have made it an effective technology for meeting the needs of next-generation cellular users. Using UAV to capture and process videos through edge computing can provide high-quality video services for multiple users. This paper considers a multi-antenna fixed-wing UAV video transmission system. By reasonably planning the UAV trajectory, beamforming technology is used to guide each transmission signal to the best path on the user side, thereby reducing energy consumption and improving the strength of the received signal. The above requirements are modeled as a nonconvex problem that requires the joint optimization of the UAV trajectory, flight time, transmission beamforming, and computing resource allocation to minimize the total energy consumption of the UAV while meeting user Quality of Service (QoS) requirements. To solve this problem, a two-stage algorithm is proposed. In the first stage, path dispersion, alternating optimization technology, and Continuous Convex Approximation (SCA) technology are used to minimize the driving energy consumption of the UAV. In the second stage, the path discrete method and SCA technology are used to minimize UAV communication and computing energy consumption. Simulation results show that, compared with the benchmark scheme, the proposed algorithm significantly reduces the energy consumption of the UAV while ensuring video quality, and it is highly efficient and practical.

Key words: Unmanned Aerial Vehicle (UAV), multi-antennas, video streaming, edge computing, Quality of Service (QoS), energy consumption