[1] 杜剑波,胥娇,姜静,等.区块链驱动的边缘计算系统联合优化算法[J].西安邮电大学学报, 2023, 28(6):1-11. DU J B, XU J, JIANG J, et al. Joint optimization algorithm for blockchain driven edge computing systems[J]. Journal of Xi'an University of Posts and Telecommunications, 2023, 28(6):1-11.(in Chinese) [2] CUI H X, ZHANG J, GENG Y H, et al. Space-Air-Ground Integrated Network (SAGIN) for 6G:requirements, architecture and challenges[J]. China Communications, 2022, 19(2):90-108. [3] LI H, OTA K, DONG M X. AI in SAGIN:building deep learning service-oriented space-air-ground integrated networks[J]. IEEE Network, 2023, 37(2):154-159. [4] ZHANG Z C, ZHANG Q, MIAO J S, et al. Energy-efficient secure video streaming in UAV-enabled wireless networks:a safe-DQN approach[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(4):1892-1905. [5] ZHOU D, SHENG M, LI J D, et al. Aerospace integrated networks innovation for empowering 6G:a survey and future challenges[J]. IEEE Communications Surveys& Tutorials, 2023, 25(2):975-1019. [6] HU B T, DU J B, CHU X L. Enabling low-latency applications in vehicular networks based on mixed fog/cloud computing systems[C]//Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Washington D.C., USA. IEEE Press, 2022:722-727. [7] DU J B, KONG Z W, SUN A J, et al. MADDPG-based joint service placement and task offloading in MEC empowered air-ground integrated networks[J]. IEEE Internet of Things Journal, 2024, 11(6):10600-10615. [8] DU J B, CHENG W J, LU G Y, et al. Resource pricing and allocation in MEC enabled blockchain systems:an A3C deep reinforcement learning approach[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1):33-44. [9] XIAO T T, CHEN C, PEI Q Q, et al. SFO:an adaptive task scheduling based on incentive fleet formation and metrizable resource orchestration for autonomous vehicle platooning[J]. IEEE Transactions on Mobile Computing, 2024, 23(7):7695-7713. [10] CHEN C, WANG C Y, CONG L, et al. A V2V emergent message dissemination scheme for 6G-oriented vehicular networks[J]. Chinese Journal of Electronics, 2023, 32(6):1179-1191. [11] CHENG N, LYU F, QUAN W, et al. Space/aerial-assisted computing offloading for IoT applications:a learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5):1117-1129. [12] XU X L, FANG Z J, QI L Y, et al. TripRes:traffic flow prediction driven resource reservation for multimedia IoV with edge computing[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17(2):1-21. [13] ZHU H B, WU Q, WU X J, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(14):12770-12782. [14] CHEN Y L, AI B, NIU Y, et al. Energy-constrained computation offloading in space-air-ground integrated networks using distributionally robust optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11):12113-12125. [15] GONG S M, CUI L Y, GU B, et al. Hierarchical deep reinforcement learning for age-of-information minimization in IRS-aided and wireless-powered wireless networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(11):8114-8127. [16] GONG Y, LI Q Y, MENG F K, et al. Data-driven deep learning for OTFS detection[J]. China Communications, 2023, 20(1):88-101. [17] GONG Y, LI Q Y, LIU L, et al. Exploring the performance of the DL-based OTFS detection scheme in Internet of vehicles[J]. Vehicular Communications, 2023, 43:100626. [18] HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles:a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1):44-55. [19] LI H F, CHEN C, SHAN H G, et al. Deep deterministic policy gradient-based algorithm for computation offloading in IoV[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3):2522-2533. [20] ZHENG G Y, XU C, WEN M W, et al. Service caching based aerial cooperative computing and resource allocation in multi-UAV enabled MEC systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10):10934-10947. [21] LIU L, FENG J, MU X Y, et al. Asynchronous deep reinforcement learning for collaborative task computing and on-demand resource allocation in vehicular edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12):15513-15526. [22] HAN Y M, ZHU L D. Improved convolutional neural network algorithm based on weight freezing method[C]//Proceedings of the 24th Asia-Pacific Conference on Communications (APCC). Washington D.C., USA:IEEE Press, 2018:341-346. [23] GUO Y X, HAN Y M, CAO H T, et al. Tree transformation and neural network based hand-written formula recognizer[C]//Proceedings of the IEEE Globecom Workshops. Washington D.C., USA:IEEE Press, 2021:1-6. [24] GONG Y K, YAO H P, WU D, et al. Computation offloading for rechargeable users in space-air-ground networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3):3805-3818. [25] HAN Y M, XIONG Z X, HOST-MADSEN A. On energy-delay tradeoff in uncoordinated MAC[C]//Proceedings of the 59th Annual Allerton Conference on Communication, Control, and Computing. Washington D.C., USA:IEEE Press, 2023:1-7. [26] HE X F, JIN R C, DAI H Y. Multi-hop task offloading with on-the-fly computation for multi-UAV remote edge computing[J]. IEEE Transactions on Communications, 2022, 70(2):1332-1344. |