作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (5): 43-51. doi: 10.19678/j.issn.1000-3428.0069181

• 空天地一体化算力网络 • 上一篇    下一篇

基于MEC的空天地一体化网络任务分割与资源分配

杜剑波1, 董伟哲1, 金蓉1, 王军选2, 康嘉文3, 刘雷4, 策力木格5   

  1. 1. 西安邮电大学通信与信息工程学院陕西省信息通信网络与安全重点实验室, 陕西 西安 710121;
    2. 西安邮电大学教务处, 陕西 西安 710121;
    3. 广东工业大学自动化学院, 广东 广州 510006;
    4. 西安电子科技大学广州研究院, 广东 广州 510555;
    5. 日本电气通信大学, 日本 东京 182-8585
  • 收稿日期:2024-01-05 修回日期:2024-02-21 出版日期:2025-05-15 发布日期:2025-05-10
  • 通讯作者: 王军选,E-mail:wangjx@xupt.edu.cn E-mail:wangjx@xupt.edu.cn
  • 基金资助:
    国家自然科学基金(62271391);陕西省教育厅服务地方专项科研项目(21JC032)。

Task Segmentation and Resource Allocation in MEC-Based Space-Air-Ground Integrated Networks

DU Jianbo1, DONG Weizhe1, JIN Rong1, WANG Junxuan2, KANG Jiawen3, LIU Lei4, Celimuge Wu5   

  1. 1. Shaanxi Key Laboratory of Information Communication Network and Security, School of Communications and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China;
    2. Office of Academic Affairs, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China;
    3. School of Automation, Guangdong University of Technology, Guangzhou 510006, Guangdong, China;
    4. Guangzhou Research Institute, Xidian University, Guangzhou 510555, Guangdong, China;
    5. The University of Electro-Communications, Tokyo 182-8585, Japan
  • Received:2024-01-05 Revised:2024-02-21 Online:2025-05-15 Published:2025-05-10

摘要: 在6G时代,空天地一体化网络(SAGIN)可以为物联网(IoT)设备提供无处不在的覆盖,能有效解决当前网络架构覆盖能力不足的问题。多接入边缘计算(MEC)是一种非常重要的技术,可以进一步增强SAGIN的服务能力,其中MEC在有效降低任务执行延迟和系统能耗方面表现出显著的能力。提出一种支持MEC的SAGIN架构,其中卫星和多架无人机(UAV)作为边缘节点,为IoT设备就近提供算力。通过IoT设备的任务分割以及UAV和卫星的带宽分配,实现网络平均总能耗的最小化。将网络动态性问题表述为马尔可夫决策过程(MDP)问题,提出一种基于深度确定性策略梯度(DDPG)的自适应决策算法对其进行求解。仿真结果表明,该算法在最小化网络能耗和DDPG代理累计奖励最大化方面表现出良好的性能。

关键词: 深度确定性策略梯度算法, 空天地一体化网络, 边缘计算, 资源分配, 任务分割

Abstract: In the 6G era, a Space-Air-Ground Integrated Network (SAGIN) can provide ubiquitous coverage for Internet of Things (IoT) devices and can therefore effectively address the current inadequacies in network architecture coverage capabilities. Multi-access Edge Computing (MEC) is a crucial technology that further enhances the service capabilities of SAGIN, demonstrating significant abilities in reducing task execution latency and system energy consumption. This paper proposes an MEC-based SAGIN architecture in which satellites and multiple Unmanned Aerial Vehicles (UAVs) act as edge nodes that offers computational power in close proximity to IoT devices. Through the task segmentation of IoT devices and bandwidth allocation for UAVs and satellites, the proposed architecture intends to minimize the average network energy consumption. The problem of high network dynamics is reformulated as a Markov Decision Process (MDP), and a low-complexity adaptive decision algorithm based on Deep Deterministic Policy Gradient (DDPG) is introduced as its solution. Simulation results demonstrate that the algorithm performs well in minimizing network energy consumption and maximizing the cumulative rewards for the DDPG Agent.

Key words: Deep Deterministic Policy Gradient (DDPG) algorithm, Space-Air-Ground Integrated Network (SAGIN), edge computing, resource allocation, task segmentation

中图分类号: