[1] 何畅.基于智能优化算法的多无人机联合搜救路径规划与通信覆盖研究[D].广州:广州大学, 2024. HE C. Research on path planning and communication coverage of multi-UAV joint search and rescue based on intelligent optimization algorithm[D]. Guangzhou:Guangzhou University, 2024.(in Chinese) [2] 苏立晨,赵浩然,郭通,等.基于动态分治的大规模多场站无人机应急救援优化方法[J].北京邮电大学学报, 2024, 47(1):65-71. SU L C, ZHAO H R, GUO T, et al. Optimization method for large-scale multi-site unmanned aerial vehicle emergency rescue based on dynamic divide-and-conquer strategy[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(1):65-71.(in Chinese) [3] 寇昆湖,王雅平,尚在飞.对海作战无人机指挥控制系统及协同模式研究[J].火力与指挥控制, 2024, 49(6):68-74. KOU K H, WANG Y P, SHANG Z F. Research on command and control system and cooperative mode of UAVs for sea operations[J]. Fire Control& Command Control, 2024, 49(6):68-74.(in Chinese) [4] DESAI J P, OSTROWSKI J, KUMAR V. Controlling formations of multiple mobile robots[C]//Proceedings of the 15th IEEE International Conference on Robotics and Automation. Washington D. C., USA:IEEE Press, 1998:2864-2869. [5] 彭建帅,付兴建.仿雁群行为的领航-跟随无人机编队控制[J].控制工程, 2023, 30(1):113-118. PENG J S, FU X J. Formation control of leader-follower UAV based on the behavior of geese swarm[J]. Control Engineering of China, 2023, 30(1):113-118.(in Chinese) [6] 冯一飞.基于行为法的分布式无人机集群控制方法与仿真研究[D].长春:吉林大学, 2023. FENG Y F. Research on control method and simulation of distributed UAV cluster based on behavior method[D]. Changchun:Jilin University, 2023.(in Chinese) [7] 李正平,鲜斌.基于虚拟结构法的分布式多无人机鲁棒编队控制[J].控制理论与应用, 2020, 37(11):2423-2431. LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory& Applications, 2020, 37(11):2423-2431.(in Chinese) [8] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533. [9] 于跃飞,林国怀,郭子杰,等.基于固定时间的多无人机系统自适应姿态控制[J].聊城大学学报(自然科学版), 2023, 36(1):11-23. YU Y F, LIN G H, GUO Z J, et al. Fixed-time-based adaptive attitude control for multi-UAV systems[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(1):11-23.(in Chinese) [10] HUANG Z B, SUN S L, ZHAO J, et al. Multi-modal policy fusion for end-to-end autonomous driving[J]. Information Fusion, 2023, 98:101834. [11] 何逸煦,林泓熠,刘洋,等.强化学习在自动驾驶技术中的应用与挑战[J].同济大学学报(自然科学版), 2024, 52(4):520-531. HE Y X, LIN H Y, LIU Y, et al. Applications and challenges of reinforcement learning in autonomous driving technology[J]. Journal of Tongji University (Natural Science), 2024, 52(4):520-531.(in Chinese) [12] 刘勇,徐雷,张楚晗.面向文本游戏的深度强化学习模型[J].吉林大学学报(工学版), 2022, 52(3):666-674. LIU Y, XU L, ZHANG C H. Deep reinforcement learning model for text games[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3):666-674.(in Chinese) [13] 牛润良.基于强化学习的Transformer模型解释与对抗攻击研究[D].长春:吉林大学, 2022. NIU R L. Research on transformer model interpretation and counterattack based on reinforcement learning[D]. Changchun:Jilin University, 2022.(in Chinese) [14] 孔繁骏.基于强化学习的智能服务机器人控制系统[J].物联网技术, 2023, 13(5):77-79. KONG F J. Control system of intelligent service robot based on reinforcement learning[J]. Internet of Things Technologies, 2023, 13(5):77-79.(in Chinese) [15] SINGH B, KUMAR R, SINGH V P. Reinforcement learning in robotic applications:a comprehensive survey[J]. Artificial Intelligence Review, 2022, 55(2):945-990. [16] HUNG S M, GIVIGI S N. A Q-learning approach to flocking with UAVs in a stochastic environment[J]. IEEE Transactions on Cybernetics, 2017, 47(1):186-197. [17] HUNG S M, GIVIGI S N, NOURELDIN A. A Dyna-Q (lambda) approach to flocking with fixed-wing UAVs in a stochastic environment[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA:IEEE Press, 2015:1918-1923. [18] WANG C, YAN C, XIANG X, et al. A continuous actor-critic reinforcement learning approach to flocking with fixed-wing UAVs[C]//Proceedings of Asian Conference on Machine Learning. Nagoya, Japan:PMLR, 2019:64-79. [19] WANG C, WANG J, SHEN Y, et al. Autonomous navigation of UAVs in large-scale complex environments:a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3):2124-2136. [20] LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:6382-6393. [21] ZHANG X P, ZHENG Y P, WANG L, et al. Multi-agent collaborative target search based on the multi-agent deep deterministic policy gradient with emotional intrinsic motivation[J]. Applied Sciences, 2023, 13(21):11951. [22] 李波,越凯强,甘志刚,等.基于MADDPG的多无人机协同任务决策[J].宇航学报, 2021, 42(6):757-765. LI B, YUE K Q, GAN Z G, et al. Multi-UAV cooperative autonomous navigation based on multi-agent deep deterministic policy gradient[J]. Journal of Astronautics, 2021, 42(6):757-765.(in Chinese) [23] NARVEKAR S, PENG B, LEONETTI M, et al. Curriculum learning for reinforcement learning domains:a framework and survey[J]. Journal of Machine Learning Research, 2020, 21(1):7382-7431. [24] 陈人龙,陈嘉礼,李善琦,等.多智能体强化学习方法综述[J].信息对抗技术, 2024, 3(1):18-32. CHEN R L, CHEN J L, LI S Q, et al. A survey of multi-agent reinforcement learning methods[J]. Information Countermeasure Technology, 2024, 3(1):18-32.(in Chinese) [25] XIAO C, LU P, HE Q. Flying through a narrow gap using end-to-end deep reinforcement learning augmented with curriculum learning and Sim2Real[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5):2701-2708. [26] 罗睿卿,曾坤,张欣景.稀疏异质多智能体环境下基于强化学习的课程学习框架[J].计算机科学, 2024, 51(1):301-309. LUO R Q, ZENG K, ZHANG X J. Curriculum learning framework based on reinforcement learning in sparse heterogeneous multi-agent environments[J]. Computer Science, 2024, 51(1):301-309.(in Chinese) |