作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (8): 182-197. doi: 10.19678/j.issn.1000-3428.0068262

• 移动互联与通信技术 • 上一篇    下一篇

面向多智能体与双层卸载的车联网卸载算法

张冀1,2, 龚雯雯1, 朵春红1,2,*(), 齐国梁1   

  1. 1. 华北电力大学(保定)计算机系, 河北 保定 071003
    2. 华北电力大学(保定)河北省能源电力知识计算重点实验室, 河北 保定 071003
  • 收稿日期:2023-08-18 出版日期:2024-08-15 发布日期:2023-12-28
  • 通讯作者: 朵春红
  • 基金资助:
    河北省省级科技计划资助(22310302D); 中央高校基本科研业务费专项资金(2021MS086)

Offloading Algorithm for Multi-Agent and Double-Layer Offloading in Internet of Vehicle

Ji ZHANG1,2, Wenwen GONG1, Chunhong DUO1,2,*(), Guoliang QI1   

  1. 1. Department of Computer, North China Electric Power University(Baoding), Baoding 071003, Hebei, China
    2. Hebei Key Laboratory of Knowledge Computing for Energy and Power, North China Electric Power University(Baoding), Baoding 071003, Hebei, China
  • Received:2023-08-18 Online:2024-08-15 Published:2023-12-28
  • Contact: Chunhong DUO

摘要:

在车联网(IoV)边缘计算环境中, 针对如何高效地进行任务卸载和资源分配来缓解移动车辆存储和计算能力有限的问题, 提出多智能体与双层卸载的IoV卸载算法。首先, 提出移动边缘计算(MEC)服务器与车辆以及空闲车辆(MEC-V-NTVC)互联的3层网络模型, 建立了任务模型、判断模型和计算模型; 其次, 将任务车辆的计算卸载以及资源分配抽象成部分可观测马尔可夫决策过程(POMDP), 并提出双层卸载机制以达到最小化系统总成本的目的。基于空闲车辆云以及单调值函数分解QMIX, 提出一种基于双层卸载机制的深度强化学习卸载算法DLSQMIX。该算法协调任务车辆、空闲车辆以及环境信息, 在考虑车辆任务时间约束的情况下, 充分利用MEC服务器以及空闲车辆的计算能力, 求得系统最优卸载决策。从边缘服务器、空闲车辆的计算能力、任务车辆、空闲车辆的数量以及平均任务量等方面对系统开销和时延进行对比。仿真实验结果表明, DLSQMIX算法能够有效求解任务卸载问题, 与遗传算法(GA)、粒子群优化(PSO)算法以及QMIX算法相比, 所提算法的系统开销减小2.52%~3.91%, 时延降低3.50%~6.59%。

关键词: 车联网, 边缘计算, 空闲车辆云, 双层卸载机制, 单调值函数分解

Abstract:

In the edge computing environment of the Internet of Vehicles (IoV), with the aim of efficiently offloading tasks and allocating resources to alleviate the limited storage and computing power of vehicles, this study proposes a offloading algorithm based on multi-agent and double-layer offloading in IoV. A three-layer network model consisting of a Mobile Edge Computing (MEC) server, Vehicles, and Non-Task Vehicle Cloud(MEC-V-NTVC) interconnection is first proposed. Additionally, task, judgment, and calculation models are established. Second, the computational offloading and resource allocation of task vehicles are abstracted into a Partially Observable Markov Decision Process (POMDP), and a double-layer offloading mechanism is proposed to minimize the system cost. Applying a double-layer offloading mechanism and monotonic value function factorization for deep multi-agent reinforcement learning QMIX, a deep reinforcement learning offloading algorithm DLSQMIX based on the double-layer offloading mechanism is proposed, which coordinates task vehicles, non-task vehicles, and state information, considering the time constraint and cooperates with the computation power of the MEC and the non-task vehicle cloud, to learn optimal offloading decisions. The system overhead and latency are compared and explained in terms of the computing power of edge servers and non-task vehicles, number of task vehicles and non-task vehicles, and average task volume. The simulation experiment results demonstrate that the DLSQMIX algorithm can effectively solve the task-offloading problem. Compared with the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, and QMIX algorithm, the proposed algorithm reduces the system overhead by 2.52%-3.91% and latency by 3.50%-6.59%.

Key words: Internet of Vehicle(IoV), edge computing, non-task vehicle cloud, double-layer offloading mechanism, monotonic value function factorization