1 |
ZHANG K, MAO Y M, LENG S P, et al. Mobile-edge computing for vehicular networks: a promising network paradigm with predictive off-loading. IEEE Vehicular Technology Magazine, 2017, 12(2): 36- 44.
doi: 10.1109/MVT.2017.2668838
|
2 |
蔡星娟, 郭彦亨, 赵天浩, 等. 基于进化多任务的边缘计算服务部署和任务卸载. 计算机工程, 2023, 49(7): 1- 9.
doi: 10.19678/j.issn.1000-3428.0066105
|
|
CAI X J, GUO Y H, ZHAO T H, et al. Edge computing service deployment and task offloading based on evolutionary multitasking. Computer Engineering, 2023, 49(7): 1- 9.
doi: 10.19678/j.issn.1000-3428.0066105
|
3 |
LIU Q L, LUO R, LIU Q. Mobility-aware computation offloading for cloud-assisted mobile edge computing in vehicular networks[C]//Proceedings of the IEEE 96th Vehicular Technology Conference (VTC2022-Fall). Washington D. C., USA: IEEE Press, 2022: 1-7.
|
4 |
张丙鑫. 基于无人机的移动边缘计算资源调度机制研究[D]. 徐州: 中国矿业大学, 2020.
|
|
ZHANG B X. Research on resource scheduling mechanism of mobile edge computing based on UAV[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|
5 |
SORKHOH I, EBRAHIMI D, ATALLAH R, et al. Workload scheduling in vehicular networks with edge cloud capabilities. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8472- 8486.
doi: 10.1109/TVT.2019.2927634
|
6 |
XU X L, LIU Q X, LUO Y, et al. A computation offloading method over big data for IoT-enabled cloud-edge computing. Future Generation Computer Systems, 2019, 95(C): 522- 533.
|
7 |
WANG J, WU W B, LIAO Z F, et al. A probability preferred priori offloading mechanism in mobile edge computing. IEEE Access, 2020, 8, 39758- 39767.
doi: 10.1109/ACCESS.2020.2975733
|
8 |
陈刚, 王志坚, 徐胜超. 基于可行点追踪-连续凸逼近的移动边缘计算任务卸载. 计算机与现代化, 2023,(8): 93- 97.
URL
|
|
CHEN G, WANG Z J, XU S C. Mobile edge computing task offloading based on feasible point tracking continuous convex approximation. Computer and Modernization, 2023,(8): 93- 97.
URL
|
9 |
薛建彬, 丁雪乾, 刘星星. 缓存辅助边缘计算的卸载决策与资源优化. 北京邮电大学学报, 2020, 43(3): 32- 37.
URL
|
|
XUE J B, DING X Q, LIU X X. Offloading decision and resource optimization for cache-assisted edge computing. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3): 32- 37.
URL
|
10 |
KHAYYAT M, ELGENDY I A, MUTHANNA A, et al. Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access, 2020, 8, 137052- 137062.
doi: 10.1109/ACCESS.2020.3011705
|
11 |
XIONG K, LENG S P, HUANG C W, et al. Intelligent task offloading for heterogeneous V2X communications. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2226- 2238.
doi: 10.1109/TITS.2020.3015210
|
12 |
KE H C, WANG J, DENG L Y, et al. Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks. IEEE Transaction on Vehicular Technology, 2020, 69(7): 7916- 7929.
doi: 10.1109/TVT.2020.2993849
|
13 |
GUO Y X, NING Z L, KWOK R. Deep reinforcement learning based traffic offloading scheme for vehicular networks[C]//Proceedings of the 5th International Conference on Computer and Communications (ICCC). Washington D. C., USA: IEEE Press, 2019: 81-85.
|
14 |
于晶, 鲁凌云, 李翔. 车联网中基于DDQN的边云协作任务卸载机制. 计算机工程, 2022, 48(12): 156- 164.
doi: 10.19678/j.issn.1000-3428.0063739
|
|
YU J, LU L Y, LI X. Edge-cloud collaborative task offloading mechanism based on DDQN in vehicular networks. Computer Engineering, 2022, 48(12): 156- 164.
doi: 10.19678/j.issn.1000-3428.0063739
|
15 |
WANG D, QIN H, SONG B, et al. Resource allocation in information-centric wireless networking with D2D-enabled MEC: a deep reinforcement learning approach. IEEE Access, 1829, 7, 114935- 114944.
|
16 |
LIAO H J, ZHOU Z Y, ZHAO X W, et al. Task offloading for vehicular fog computing under information uncertainty: a matching-learning approach[C]//Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC). Washington D. C., USA: IEEE Press, 2019: 2001-2006.
|
17 |
XU X L, ZHANG X, LIU X H, et al. Adaptive computation offloading with edge for 5G-envisioned Internet of connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5213- 5222.
doi: 10.1109/TITS.2020.2982186
|
18 |
WU Y L, WU J G, CHEN L, et al. Fog computing model and efficient algorithms for directional vehicle mobility in vehicular network. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(5): 2599- 2614.
doi: 10.1109/TITS.2020.2971343
|
19 |
ZHANG J, GUO H Z, LIU J J, et al. Task offloading in vehicular edge computing networks: a load-balancing solution. IEEE Transactions on Vehicular Technology, 2020, 69(2): 2092- 2104.
doi: 10.1109/TVT.2019.2959410
|
20 |
WANG X J, NING Z L, WANG L. Offloading in Internet of vehicles: a fog-enabled real-time traffic management system. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4568- 4578.
doi: 10.1109/TII.2018.2816590
|
21 |
LI S L, ZHAI D S, DU P F, et al. Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks. Science China Information Sciences, 2018, 62(2): 29307.
|
22 |
YU Z Y, TANG Y L, ZHANG L T, et al. Deep reinforcement learning based computing offloading decision and task scheduling in Internet of vehicles[C]//Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC). Washington D. C., USA: IEEE Press, 2021: 1166-1171.
|
23 |
SUN J N, GU Q, ZHENG T, et al. Joint optimization of computation offloading and task scheduling in vehicular edge computing networks. IEEE Access, 2020, 8, 10466- 10477.
doi: 10.1109/ACCESS.2020.2965620
|
24 |
LIU Y J, WANG S G, HUANG J, et al. A computation offloading algorithm based on game theory for vehicular edge networks[C]//Proceedings of the IEEE International Conference on Communications (ICC). Washington D. C., USA: IEEE Press, 2018: 1-6.
|
25 |
HE W, YAN G J, XU L D. Developing vehicular data cloud services in the IoT environment. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1587- 1595.
doi: 10.1109/TII.2014.2299233
|
26 |
AL-RASHED E, AL-ROUSAN M, AL-IBRAHIM N. Performance evaluation of wide-spread assignment schemes in a vehicular cloud. Vehicular Communications, 2017, 9, 144- 153.
doi: 10.1016/j.vehcom.2017.05.005
|
27 |
HU X Y, TANG X K, YU Y T, et al. Joint load balancing and offloading optimization in multiple parked vehicle-assisted edge computing. Wireless Communications and Mobile Computing, 2021, 2021, 8943862.
doi: 10.1155/2021/8943862
|
28 |
NGUYEN D C, PATHIRANA P N, DING M, et al. Deep reinforcement learning for collaborative offloading in heterogeneous edge networks[C]//Proceedings of the 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). Washington D. C., USA: IEEE Press, 2021: 297-303.
|
29 |
HUANG X Y, LENG S P, MAHARJAN S, et al. Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9282- 9293.
doi: 10.1109/TVT.2021.3096928
|
30 |
LI S L, LI B G, ZHAO W. Joint optimization of caching and computation in multi-server NOMA-MEC system via reinforcement learning. IEEE Access, 2020, 8, 112762- 112771.
doi: 10.1109/ACCESS.2020.3002895
|
31 |
GAN Z Y, LIN R H, ZOU H. A multi-agent deep reinforcement learning approach for computation offloading in 5G mobile edge computing[C]//Proceedings of the 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). Washington D. C., USA: IEEE Press, 2022: 645-648.
|
32 |
叶佩文, 贾向东, 杨小蓉, 等. 面向车联网的多智能体强化学习边云协同卸载. 计算机工程, 2021, 47(4): 13- 20.
doi: 10.19678/j.issn.1000-3428.0058323
|
|
YE P W, JIA X D, YANG X R, et al. Collaborative edge and cloud offloading for Internet of vehicles using multi-agent reinforcement learning. Computer Engineering, 2021, 47(4): 13- 20.
doi: 10.19678/j.issn.1000-3428.0058323
|
33 |
杨超, 王宗山, 聂仁灿, 等. 车联网中基于麻雀搜索算法的计算卸载策略. 计算机工程与设计, 2023, 44(1): 1- 7.
URL
|
|
YANG C, WANG Z S, NIE R C, et al. Computing offloading strategy based on sparrow search algorithm in vehicular networks. Computer Engineering and Design, 2023, 44(1): 1- 7.
URL
|
34 |
丛玉良, 孙闻晞, 薛科, 等. 基于改进的混合遗传算法的车联网任务卸载策略研究. 通信学报, 2022, 43(10): 77- 85.
URL
|
|
CONG Y L, SUN W X, XUE K, et al. Research on task offloading strategy of Internet of vehicles based on improved hybrid genetic algorithm. Journal on Communications, 2022, 43(10): 77- 85.
URL
|
35 |
景泽伟, 杨清海, 秦猛. 移动边缘计算中的时延和能耗均衡优化算法. 北京邮电大学学报, 2020, 43(2): 110- 115.
URL
|
|
JING Z W, YANG Q H, QIN M. A delay and energy tradeoff optimization algorithm for task offloading in mobile-edge computing networks. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 110- 115.
URL
|
36 |
LI J, GAO H, LV T J, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]//Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Washington D. C., USA: IEEE Press, 2018: 1-6.
|
37 |
RASHID T, SAMVELYAN M, SCHROEDER DE WITT C, et al. QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning[EB/OL]. [2023-07-12]. https://arxiv.org/pdf/1803.11485.
|
38 |
王珺, 刘家豪, 宋巧凤. 一种基于遗传算法的车载边缘计算卸载方案. 南京邮电大学学报(自然科学版), 2022, 42(6): 1- 9.
URL
|
|
WANG J, LIU J H, SONG Q F. An offloading scheme of vehicle edge computing based on the genetic algorithm. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2022, 42(6): 1- 9.
URL
|
39 |
林峰, 罗铖文, 丁鹏举, 等. 车联网中自适应联合计算卸载资源分配算法. 计算机工程与设计, 2021, 42(7): 1824- 1830.
URL
|
|
LIN F, LUO C W, DING P J, et al. Resource allocation algorithm for adaptive joint computing offloading in C-V2X. Computer Engineering and Design, 2021, 42(7): 1824- 1830.
URL
|
40 |
HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow: combining improvements in deep reinforcement learning[EB/OL]. [2023-07-12]. https://arxiv.org/pdf/1710.02298.
|