| 1 |
KEYS R. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153- 1160.
doi: 10.1109/TASSP.1981.1163711
|
| 2 |
黄淑英, 吴昕, 杨勇, 等. 自适应正则化稀疏表示的遥感图像SR重建. 小型微型计算机系统, 2023, 44(3): 573- 581.
|
|
HUANG S Y, WU X, YANG Y, et al. Remote sensing image super-resolution reconstruction based on adaptive regularized sparse representation. Journal of Chinese Computer Systems, 2023, 44(3): 573- 581.
|
| 3 |
CHAO D, CHEN C, HE K M. Image super-resolution using deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 1-5.
|
| 4 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1646-1654.
|
| 5 |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1637-1645.
|
| 6 |
ZHOU Y P, LI Z, GUO C L, et al. SRFormer: permuted self-attention for single image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 12734-12745.
|
| 7 |
|
| 8 |
YI X P, XU H, ZHANG H, et al. Diff-Retinex: rethinking low-light image enhancement with a generative diffusion model[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 12268-12277.
|
| 9 |
CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution with spatio-temporal networks and motion compensation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2848-2857.
|
| 10 |
WANG X T, CHAN K C K, YU K, et al. EDVR: video restoration with enhanced deformable convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2019: 1954-1963.
|
| 11 |
TIAN Y P, ZHANG Y L, FU Y, et al. TDAN: temporally-deformable alignment network for video super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 3357-3366.
|
| 12 |
LIANG J Y, CAO J Z, FAN Y C, et al. VRT: a video restoration transformer. IEEE Transactions on Image Processing, 2024, 33, 2171- 2182.
doi: 10.1109/TIP.2024.3372454
|
| 13 |
CHEN Z, LONG F, QIU Z, et al. Learning spatial adaptation and temporal coherence in diffusion models for video super-resolution[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2403.17000.
|
| 14 |
ZHOU X, ZHANG L, ZHAO X, et al. Video super-resolution transformer with masked inter & intra-frame attention[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2401.06312.
|
| 15 |
ZHANG X D, ZENG H, ZHANG L. Edge-oriented convolution block for real-time super resolution on mobile devices[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4034-4043.
|
| 16 |
BERGER G, DHINGRA M, MERCIER A, et al. QuickSRNet: plain single-image super-resolution architecture for faster inference on mobile platforms[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D.C., USA: IEEE Press, 2023: 2187-2196.
|
| 17 |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 1874-1883.
|
| 18 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520.
|
| 19 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6848-6856.
|
| 20 |
|
| 21 |
DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13728-13737.
|
| 22 |
|
| 23 |
GOU W R, YI Z Y, XIANG Y, et al. SYENet: a simple yet effective network for multiple low-level vision tasks with real-time performance on mobile device[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2023: 12148-12161.
|
| 24 |
WILLIAMS S, WATERMAN A, PATTERSON D. Roofline. Communications of the ACM, 2009, 52(4): 65- 76.
doi: 10.1145/1498765.1498785
|
| 25 |
孙毅, 王会梅, 鲜明, 等. Kubeflow异构算力调度策略研究. 计算机工程, 2024, 50(2): 25- 32.
doi: 10.19678/j.issn.1000-3428.0067396
|
|
SUN Y, WANG H M, XIAN M, et al. Research on heterogeneous computing scheduling strategy for Kubeflow. Computer Engineering, 2024, 50(2): 25- 32.
doi: 10.19678/j.issn.1000-3428.0067396
|
| 26 |
周义涛, 李阳, 韩超, 等. 适用于S-NUCA异构处理器的任务调度与热管理系统. 计算机工程, 2024, 50(2): 196- 205.
doi: 10.19678/j.issn.1000-3428.0067161
|
|
ZHOU Y T, LI Y, HAN C, et al. Task scheduling and thermal management system for S-NUCA heterogeneous processor. Computer Engineering, 2024, 50(2): 196- 205.
doi: 10.19678/j.issn.1000-3428.0067161
|
| 27 |
李博, 黄东强, 贾金芳, 等. 基于CPU与GPU的异构模板计算优化研究. 计算机工程, 2023, 49(4): 131- 137.
doi: 10.19678/j.issn.1000-3428.0064282
|
|
LI B, HUANG D Q, JIA J F, et al. Research on optimization of heterogeneous stencil computing based on CPU and GPU. Computer Engineering, 2023, 49(4): 131- 137.
doi: 10.19678/j.issn.1000-3428.0064282
|
| 28 |
MUNSHI A, GINSBURG D, SHREINER D. OpenGL ES 2.0 programming guide[M]. [S. l. ]: Pearson Education, 2008.
|
| 29 |
李双峰. TensorFlow Lite: 端侧机器学习框架. 计算机研究与发展, 2020, 57(9): 1839- 1853.
|
|
LI S F. TensorFlow Lite: on-device machine learning framework. Journal of Computer Research and Development, 2020, 57(9): 1839- 1853.
|
| 30 |
李林, 若朴. 详解Core ML框架及智能音箱HomePod. 计算机与网络, 2017, 43(12): 34- 35.
|
|
LI L, RUO P. Detailed explanation of Core ML framework and intelligent speaker HomePod. Computer & Network, 2017, 43(12): 34- 35.
|
| 31 |
甘润东, 沈舒尹, 张宇哲. MXNet框架中基于OpenCL核函数的多维线性数据处理. 数据与计算发展前沿, 2022, 4(2): 29- 38.
|
|
GAN R D, SHEN S Y, ZHANG Y Z. Multidimensional linear data processing based on OpenCL kernel function in MXNet framework. Frontiers of Data and Computing Development, 2022, 4(2): 29- 38.
|