| 1 |
卞维新, 徐德琴. 线性投影分析在指纹方向场提取中的应用研究. 小型微型计算机系统, 2013, 34 (4): 921- 925.
|
|
BIAN W X , XU D Q . Application and study of linear projection analysis in fingerprint orientation field extraction. Journal of Chinese Computer Systems, 2013, 34 (4): 921- 925.
|
| 2 |
李硕, 赵朝阳, 屈音璇, 等. 深度学习技术在指纹识别中的应用. 计算机工程, 2024, 50 (12): 33- 47.
doi: 10.19678/j.issn.1000-3428.0068276
|
|
LI S , ZHAO C Y , QU Y X , et al. Application of deep learning in fingerprint recognition. Computer Engineering, 2024, 50 (12): 33- 47.
doi: 10.19678/j.issn.1000-3428.0068276
|
| 3 |
秦万广, 杨帆, 刘娅静, 等. 指纹图像采集及真伪鉴别技术研究. 微计算机信息, 2007, 23 (19): 287- 289.
|
|
QIN W G , YANG F , LIU Y J , et al. Research on the technology of fingerprints image pickup and true-false distinguish. Microcomputer Information, 2007, 23 (19): 287- 289.
|
| 4 |
GUTIÉRREZ-REDOMERO E , ALONSO C , ROMERO E , et al. Variability of fingerprint ridge density in a sample of spanish caucasians and its application to sex determination. Forensic Science International, 2008, 180 (1): 17- 22.
doi: 10.1016/j.forsciint.2008.06.014
|
| 5 |
ACREE M A . Is there a gender difference in fingerprint ridge density?. Forensic Science International, 1999, 102 (1): 35- 44.
doi: 10.1016/S0379-0738(99)00037-7
|
| 6 |
NITHIN M D , MANJUNATHA B , PREETHI D S , et al. Gender differentiation by finger ridge count among South Indian population. Journal of Forensic and Legal Medicine, 2011, 18 (2): 79- 81.
doi: 10.1016/j.jflm.2011.01.006
|
| 7 |
NAYAK V C , RASTOGI P , KANCHAN T , et al. Sex differences from fingerprint ridge density in Chinese and Malaysian population. Forensic Science International, 2010, 197 (1/2/3): 67- 69.
|
| 8 |
GUTIÉRREZ-REDOMERO E , ALONSO M C , DIPIERRI J E . Sex differences in fingerprint ridge density in the Mataco-Mataguayo population. HOMO, 2011, 62 (6): 487- 499.
doi: 10.1016/j.jchb.2011.05.001
|
| 9 |
KRALIK , M , NOVOTNY V . Epidermal ridge breadth: an indicator of age and sex in paleodermatoglyphics. Variability and Evolution, 2003, 11, 5- 30.
|
| 10 |
GUNGADIN S . Sex determination from fingerprint ridge density. Internet Journal of Medical Update, 2007, 2 (2): 15- 22.
|
| 11 |
BADAWI A M , MAHFOUZ M , TADROSS R , et al. Fingerprint-based gender classification. IPCV, 2006, 6 (8): 1.
|
| 12 |
AMBADIYIL S , SOOREJ K S , MAHADEVAN PILLAI V P . Biometric based unique ID generation and one to one verification for security documents. Procedia Computer Science, 2015, 46, 507- 516.
doi: 10.1016/j.procs.2015.02.075
|
| 13 |
PICARD J, VIELHAUER C, THORWIRTH N. Towards fraud-proof ID documents using multiple data hiding technologies and biometrics[C]//Proceedings of the Security, Steganography, and Watermarking of Multimedia Contents Ⅵ. Washington D.C., USA: IEEE Press, 2004: 416.
|
| 14 |
SAHU S , RAO A P , MISHRA S T . A study on various methods based on gender classification through fingerprints. International Journal of Computer Applications, 2015, 975, 8887.
|
| 15 |
TOM R J , ARULKUMARAN T , SCHOLAR M E . Fingerprint based gender classification using 2D discrete wavelet transforms and principal component analysis. International Journal of Engineering Trends and Technology, 2013, 4 (2): 199- 203.
|
| 16 |
GNANASIVAM P , MUTTAN S . Fingerprint gender classification using wavelet transform and singular value decomposition. International Journal of Computer Science Issues, 2012, 9 (2): 123- 132.
|
| 17 |
GUPTA S , RAO A P . Fingerprint based gender classification using discrete wavelet transform & artificial neural network. International Journal of Computer Science and Mobile Computing, 2014, 3 (4): 1289- 1296.
|
| 18 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2261-2269.
|
| 19 |
|
| 20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
| 21 |
SINGH S, CHOI K, KODALI A, et al. Dynamic fusion of classifiers for fault diagnosis[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Washington D.C., USA: IEEE Press, 2007: 2467-2472.
|
| 22 |
陈缘, 王加阳. 基于三支决策的证据融合策略. 小型微型计算机系统, 2023, 44 (8): 1629- 1636.
|
|
CHEN Y , WANG J Y . Evidence fusion strategy based on three-way decision. Journal of Chinese Computer Systems, 2023, 44 (8): 1629- 1636.
|
| 23 |
刘肖, 袁冠, 张艳梅, 等. 基于自适应多分类器融合的手势识别. 计算机科学, 2020, 47 (7): 103- 110.
|
|
LIU X , YUAN G , ZHANG Y M , et al. Gesture recognition based on adaptive multi classifier fusion. Computer Science, 2020, 47 (7): 103- 110.
|
| 24 |
|
| 25 |
SHEHU Y I, RUIZ-GARCIA A, PALADE V, et al. Detailed identification of fingerprints using convolutional neural networks[C]//Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Washington D.C., USA: IEEE Press, 2018: 1161-1165.
|
| 26 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|
| 27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
|
| 32 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520.
|
| 33 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPs for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 12021-12031.
|
| 34 |
|
| 35 |
|