[1] KEYS R.Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1981,29(6):1153-1160. [2] ZHANG Lei,WU Xiaolin.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing,2006,15(8):2226-2238. [3] FATTAL R.Image upsampling via imposed edge statistics[J].ACM Transactions on Graphics,2007,26(3):95-103. [4] JUNG S W,KIM T H,KO S J.A novel multiple image deblurring technique using fuzzy projection onto convex sets[J].IEEE Signal Processing Letters,2009,16(3):192-195. [5] NAYAK R,HARSHAVARDHAN S,PATRA D.Morphology based iterative back-projection for super-resolution reconstruction of image[C]//Proceedings of the 2nd International Conference on Emerging Technology Trends in Electronics,Communication and Networking.Washington D.C.,USA:IEEE Press,2014:1-6. [6] SUN Dong,GAO Qingwei,LU Yixiang,et al.A novel image denoising algorithm using linear Bayesian MAP estimation based on sparse representation[J].Signal Processing,2014,100(7):132-145. [7] DONG C,LOY C C,HE K M,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [8] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [9] LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:4681-4690. [10] LAI W S,HUANG J B,AHUJA N,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:624-632. [11] TAI Ying,YANG Jian,LIU Xiaoming.Image super-resolution via deep recursive residual network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3147-3155. [12] JOHNSON J,ALAHI A,LI F F.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of ECCV'16.Berlin,Germany:Springer,2016:694-711. [13] SAJJADI M S M,SCHOLKOPF B,HIRSCH M.EnhanceNet:single image super-resolution through automated texture synthesis[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:4491-4500. [14] GOODFELLOW I,ABADIE J P,MIRZA M,et al.Generative adversarial nets[EB/OL].[2019-11-25].https://www.researchgate.net/publication/319770355_Generative_Adversarial_Nets. [15] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:136-144. [16] WANG Xintao,YU Ke,WU Shixiang,et al.ESRGAN:enhanced super-resolution generative adversarial net-works[C]//Proceedings of 2019 European Conference on Computer Vision.Berlin,Germany:Springer,2019:63-79. [17] RATLIFF L J,BURDEN S A,SASTRY S S.Characterization and computation of local Nash equilibria in continuous games[C]//Proceedings of 2013 Annual Allerton Conference on Communication.Washington D.C.,USA:IEEE Press,2013:917-924. [18] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Identity mappings in deep residual networks[C]//Proceedings of ECCV'16.Berlin,Germany:Springer,2016:630-645. [19] SRIVASTAVA R K,GREFF K,SCHMIDHUBER J.Training very deep networks[EB/OL].[2019-11-25].https://www.researchgate.net/publication/280329704_Training_Very_Deep_Networks. [20] HUANG Gao,SUN Yu,LIU Zhuang,et al.Deep networks with stochastic depth[C]//Proceedings of ECCV'16.Berlin,Germany:Springer,2016:646-661. [21] HUANG G,LIU Z,LAURENS V D M,et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:4700-4708. [22] JEGOU S,DROZDZAL M,VAZQUEZ D,et al.The one hundred layers Tiramisu:fully convolutional DenseNets for semantic segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:11-19. [23] PARK S,JEONG Y,KIM H S.Multi-resolution DenseNet based acoustic models for reverberant speech recognition[J].Phonetics and Speech Sciences,2018:10(1):33-38. [24] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,38(2):295-307. [25] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of Wasserstein GANs[EB/OL].[2019-11-25].https://www.researchgate.net/publication/315765101_Imp roved_Training_of_Wasserstein_GANs. [26] NAH S,KIM T H,LEE K M.Deep multi-scale convolu-tional neural network for dynamic scene deblurring[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:3883-3891. [27] ZHANG Yulun,TIAN Yapeng,KONG Yu,et al.Residual dense network for image super-resolution[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:2472-2481. [28] ZHANG Yulun,LI Kunpeng,LI Kai,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of ECCV'18.Berlin,Germany:Springer,2018:294-310. [29] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. |