作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 59-70. doi: 10.19678/j.issn.1000-3428.0069349

• 人工智能与模式识别 • 上一篇    下一篇

基于知识图谱的异常个体提前识别模型研究

徐式芃, 王雷*(), 盛捷   

  1. 中国科学技术大学信息科学技术学院,安徽 合肥 230031
  • 收稿日期:2024-02-04 修回日期:2024-04-19 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 王雷
  • 基金资助:
    高技术创新特区项目(20-163-14-LZ-001-004-01)

Knowledge Graph-based Advance Recognition Model for Abnormal Individuals

XU Shipeng, WANG Lei*(), SHENG Jie   

  1. School of Information Science and Technology, University of Science and Technology of China, Hefei 230031, Anhui, China
  • Received:2024-02-04 Revised:2024-04-19 Online:2025-09-15 Published:2025-09-26
  • Contact: WANG Lei

摘要:

识别视频中的异常个体是计算机视觉领域重要的研究课题,已有算法主要研究如何检测出异常行为的爆发期,而忽略了异常行为的发展阶段,同时存在异常定义不明确、可解释性差、应用场景泛化能力不强等问题。针对上述问题,提出一种基于知识图谱的异常个体提前识别模型。对视频进行行人检测与跟踪、行人视觉关注目标检测和行人行为识别,以捕获与异常行为相关的行人属性特征;建立针对异常个体的知识图谱网络,提出年龄属性、社交距离等4种节点建模算法,根据行人属性对节点进行建模,更好地分析异常个体在异常行为发展期的特征;提出拐卖儿童、偷窃/抢劫和打架3种基于节点状态转移的异常个体推理算法,对知识图谱节点进行状态推理,得出个体在未来发生异常行为的概率值,实现对异常个体的提前识别,采用的推理算法增强了模型的可解释性;制作并标注异常个体提前发现数据集,定义偷窃、打架、抢劫和拐卖儿童4种异常行为,其中的样本源自不同的拍摄场景。在该数据集上评估模型的有效性,实验结果表明,该模型的均值平均精度(mAP)为22.83%,优于其他主流行为识别模型,其中与SlowFast模型相比提升了18.96百分点,表明所提模型能在异常行为爆发之前有效地识别出异常个体,且模型对应用场景具有良好的泛化能力。

关键词: 异常行为, 提前识别, 行为识别, 异常检测, 行人属性, 知识图谱

Abstract:

The identification of abnormal individuals in videos is an important research topic in the field of computer vision. Existing algorithms primarily focus on detecting the outbreak phase of abnormal behaviors but overlook their developmental stage. Moreover, they suffer from issues such as unclear definitions of abnormalities, poor interpretability, and weak generalizability across application scenarios. To address these problems, this study proposes a knowledge graph-based model for the early identification of abnormal individuals. The model performs pedestrian detection and tracking, pedestrian visual attention target detection, and pedestrian behavior recognition from videos to capture pedestrian attribute features related to abnormal behaviors. Moreover, the study establishes a knowledge graph network targeting abnormal individuals and proposes four node modeling algorithms, including those for age attributes and social distance. Nodes are modeled based on pedestrian attributes to better analyze the characteristics of abnormal individuals during the developmental stage of abnormal behaviors. Additionally, the study proposes three abnormal individual reasoning algorithms based on node state transitions for child abduction, theft, robbery, and fighting. These algorithms perform state reasoning on knowledge graph nodes to derive the probability of an individual engaging in abnormal behavior in the future, thereby enabling the early identification of abnormal individuals. The reasoning algorithms adopted enhance the interpretability of the model. An early abnormal individual detection dataset is created and annotated, defining four types of abnormal behaviors: theft, fighting, robbery, and child abduction. The samples in the dataset are sourced from various shooting scenarios. The effectiveness of the model is evaluated on this dataset, and the experimental results show that the model achieves a mean Average Precision (mAP) of 22.83%, outperforming other mainstream behavior recognition models. Specifically, it demonstrates an 18.96 percentage point improvement over the SlowFast model, indicating that the proposed model can effectively identify abnormal individuals before the outbreak of abnormal behaviors and is generalizable across application scenarios.

Key words: abnormal behavior, advance recognition, behavior recognition, anomaly detection, pedestrian attribute, knowledge graph